简介概要

Completely Green Synthesis of Ag Nanoparticles Stabilized by Soy Protein Isolate under UV Irradiation

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2012年第5期

论文作者:刘仁 刘晓亚

文章页码:852 - 856

摘    要:A completely green pathway for the preparation of Ag nanoparticles was proposed, by using soy protein isolate (SPI) as stabilizer under UV irradiation and H2O as the environmentally benign solvent throughout the preparation. Transmission electronic microscopy (TEM) and zeta potential characterization results indicated that the Ag nanoparticles were stable and well dispersed with an average diameter about 13 nm, and X-ray diffraction (XRD) analysis of SPI/Ag composite nanoparticles confirmed the formation of metallic silver. UV-Vis spectrum showed that the Ag nanoparticles dispersion solution had the maximum absorbance at about 430 nm due to surface plasmon resonance of the Ag nanoparticles. Infrared spectroscopy confirmed that the polypeptide backbone of SPI was not cleaved during the conjugation process and that some active amino groups were oxidized. The SPI/Ag composite nanoparticles have excellent antibacterial activity against two representative bacteria, staphylococcus aureus (Gram positive) and escherichia coli (Gram negative) in the presence of SPI.

详情信息展示

Completely Green Synthesis of Ag Nanoparticles Stabilized by Soy Protein Isolate under UV Irradiation

刘仁,刘晓亚

The Key Laboratory of Food Colloids and Biotechnology,Ministry of Education,School of Chemical and Material Engineering,Jiangnan University

摘 要:A completely green pathway for the preparation of Ag nanoparticles was proposed, by using soy protein isolate (SPI) as stabilizer under UV irradiation and H2O as the environmentally benign solvent throughout the preparation. Transmission electronic microscopy (TEM) and zeta potential characterization results indicated that the Ag nanoparticles were stable and well dispersed with an average diameter about 13 nm, and X-ray diffraction (XRD) analysis of SPI/Ag composite nanoparticles confirmed the formation of metallic silver. UV-Vis spectrum showed that the Ag nanoparticles dispersion solution had the maximum absorbance at about 430 nm due to surface plasmon resonance of the Ag nanoparticles. Infrared spectroscopy confirmed that the polypeptide backbone of SPI was not cleaved during the conjugation process and that some active amino groups were oxidized. The SPI/Ag composite nanoparticles have excellent antibacterial activity against two representative bacteria, staphylococcus aureus (Gram positive) and escherichia coli (Gram negative) in the presence of SPI.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号