基于自注意力生成对抗网络的图像超分辨率重建
来源期刊:控制与决策2021年第6期
论文作者:王雪松 晁杰 程玉虎
文章页码:1324 - 1332
关键词:图像超分辨率重建;自注意力机制;生成对抗网络;损失函数;
摘 要:针对如何恢复重建后超分辨率图像的纹理细节问题,提出基于自注意力生成对抗网络的图像超分辨率重建模型(SRAGAN).在SRAGAN中,基于自注意力机制和残差模块相结合的生成器用于将低分辨率图像变换为超分辨率图像,基于深度卷积网络构成的判别器试图区分重建后的超分辨率图像和真实超分辨率图像间的差异.在损失函数构造方面,一方面利用Charbonnier内容损失函数来提高图像的重建精度,另一方面使用预训练VGG网络激活前的特征值来计算感知损失以实现超分辨率图像的精确纹理细节重构.实验结果表明, SRAGAN在峰值信噪比和结构相似度分数上均优于当前流行算法,能够重构出更为真实和具有清晰纹理的图像.
王雪松,晁杰,程玉虎
摘 要:针对如何恢复重建后超分辨率图像的纹理细节问题,提出基于自注意力生成对抗网络的图像超分辨率重建模型(SRAGAN).在SRAGAN中,基于自注意力机制和残差模块相结合的生成器用于将低分辨率图像变换为超分辨率图像,基于深度卷积网络构成的判别器试图区分重建后的超分辨率图像和真实超分辨率图像间的差异.在损失函数构造方面,一方面利用Charbonnier内容损失函数来提高图像的重建精度,另一方面使用预训练VGG网络激活前的特征值来计算感知损失以实现超分辨率图像的精确纹理细节重构.实验结果表明, SRAGAN在峰值信噪比和结构相似度分数上均优于当前流行算法,能够重构出更为真实和具有清晰纹理的图像.
关键词:图像超分辨率重建;自注意力机制;生成对抗网络;损失函数;