基于混合差分遗传算法的Bouc-Wen迟滞模型辨识策略
来源期刊:控制与决策2021年第2期
论文作者:李自成 张赛 王后能 熊涛
文章页码:371 - 378
关键词:混合差分遗传算法;Bouc-Wen模型;迟滞非线性;参数辨识;收敛速度;计算精度;
摘 要:提出一种应用于Bouc-Wen迟滞模型的混合差分遗传算法.该算法可以自适应调节缩放因子来改变交叉概率因子的值,同样也可以自动调节交叉概率因子来调整缩放因子的值.通过缩放因子和交叉概率因子的混合作用,能使算法前期维持种群多样性,同时强化对全局最优值的搜索能力,从而快速寻找最适模型参数.在算法后期,随着局部最优值搜索能力的提高,会进一步提高最优模型参数的精度.与传统的自适应差分遗传算法在Bouc-Wen迟滞模型上的应用进行对比,仿真结果表明所提出的混合差分遗传算法不仅收敛速度更快而且计算精度更高.
李自成,张赛,王后能,熊涛
武汉工程大学电气信息学院
摘 要:提出一种应用于Bouc-Wen迟滞模型的混合差分遗传算法.该算法可以自适应调节缩放因子来改变交叉概率因子的值,同样也可以自动调节交叉概率因子来调整缩放因子的值.通过缩放因子和交叉概率因子的混合作用,能使算法前期维持种群多样性,同时强化对全局最优值的搜索能力,从而快速寻找最适模型参数.在算法后期,随着局部最优值搜索能力的提高,会进一步提高最优模型参数的精度.与传统的自适应差分遗传算法在Bouc-Wen迟滞模型上的应用进行对比,仿真结果表明所提出的混合差分遗传算法不仅收敛速度更快而且计算精度更高.
关键词:混合差分遗传算法;Bouc-Wen模型;迟滞非线性;参数辨识;收敛速度;计算精度;