VAE_LSTM算法在时间序列预测模型中的研究
来源期刊:湖南科技大学学报自然科学版2020年第3期
论文作者:杨英 唐平
文章页码:93 - 101
关键词:时间序列;预测模型;神经网络;长短期记忆网络;变分自编码器;
摘 要:针对长短期记忆网络(LSTM)算法对时间序列预测存在的不足,考虑到样本序列如果包含线性关系或含有噪音时LSTM算法预测将不准确,同时分析了变分自编码器(VAE)对异常样本修复的原理,提出了一种改进的LSTM时间序列预测算法VAE_LSTM,将VAE网络修复样本的思想加入到传统的LSTM网络,对样本序列进行修复后再输入LSTM神经网络训练,最终建立了时间序列预测模型.阐述了模型建立的方法与步骤,详细分析了模型的原理.使用长江汉口历史水文数据序列进行仿真实验,结果表明:VAE_LSTM算法预测模型在时间序列预测方面有较好表现,满足预测精度要求,比传统LSTM时间序列预测模型的预测准确性高,尤其中短期预测更为准确;对比实验同时表明此模型准确性高于ARIMA,RNN等预测模型.
杨英1,唐平2
1. 广东交通职业技术学院信息学院2. 广东工业大学自动化学院
摘 要:针对长短期记忆网络(LSTM)算法对时间序列预测存在的不足,考虑到样本序列如果包含线性关系或含有噪音时LSTM算法预测将不准确,同时分析了变分自编码器(VAE)对异常样本修复的原理,提出了一种改进的LSTM时间序列预测算法VAE_LSTM,将VAE网络修复样本的思想加入到传统的LSTM网络,对样本序列进行修复后再输入LSTM神经网络训练,最终建立了时间序列预测模型.阐述了模型建立的方法与步骤,详细分析了模型的原理.使用长江汉口历史水文数据序列进行仿真实验,结果表明:VAE_LSTM算法预测模型在时间序列预测方面有较好表现,满足预测精度要求,比传统LSTM时间序列预测模型的预测准确性高,尤其中短期预测更为准确;对比实验同时表明此模型准确性高于ARIMA,RNN等预测模型.
关键词:时间序列;预测模型;神经网络;长短期记忆网络;变分自编码器;