Dielectric and Ferroelectric Properties of Complex Perovskite Ceramics Under Compressive Stress
来源期刊:材料科学与工程学报2007年第6期
论文作者:N. Triamnak A. Ngamjarurojana S. Ananta Y. Laosiritaworn M. Unruan, S. Wongsaenmai R. Yimnirun
关键词:dielectric properties; ferroelectric properties; stress; perovskite ceramics;
摘 要:Dielectric and ferroelectric properties of complex perovskite PZT-PZN ceramic system were investigated under the influence of the compressive stress. The results showed that the dielectric properties, i.e. dielectric constant ( εr ) and dielectric loss ( tan δ), and the ferroelectric characteristics, i.e. the area of the ferroelectric hysteresis loops, the saturation polarization ( P(sat) ), and the remnant polarization (Pr) changed significantly with increasing compressive stress. These changes depended strongly on the ceramic compositions. The experimental results on the dielectric properties could be explained by both intrinsic and extrinsic domain-related mechanisms involving domain wall motions, as well as the de-aging phenomenon. The stress-induced domain wall motion suppression and non-180° ferroelectric domain switching processes were responsible for the changes observed in the ferroelectric parameters. In addition,a significant decrease in those parameters after a cycle of stress was observed and attributed to the stress induced decrease in switchable part of spontaneous polarization. This study clearly show that the applied stress had significant influence on the electrical properties of complex perovskite ceramics.
N. Triamnak1,A. Ngamjarurojana1,S. Ananta1,Y. Laosiritaworn1,M. Unruan, S. Wongsaenmai1,R. Yimnirun1
(1.Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand)
摘要:Dielectric and ferroelectric properties of complex perovskite PZT-PZN ceramic system were investigated under the influence of the compressive stress. The results showed that the dielectric properties, i.e. dielectric constant ( εr ) and dielectric loss ( tan δ), and the ferroelectric characteristics, i.e. the area of the ferroelectric hysteresis loops, the saturation polarization ( P(sat) ), and the remnant polarization (Pr) changed significantly with increasing compressive stress. These changes depended strongly on the ceramic compositions. The experimental results on the dielectric properties could be explained by both intrinsic and extrinsic domain-related mechanisms involving domain wall motions, as well as the de-aging phenomenon. The stress-induced domain wall motion suppression and non-180° ferroelectric domain switching processes were responsible for the changes observed in the ferroelectric parameters. In addition,a significant decrease in those parameters after a cycle of stress was observed and attributed to the stress induced decrease in switchable part of spontaneous polarization. This study clearly show that the applied stress had significant influence on the electrical properties of complex perovskite ceramics.
关键词:dielectric properties; ferroelectric properties; stress; perovskite ceramics;
【全文内容正在添加中】