基于智能算法的预成形模具优化设计

来源期刊:中南大学学报(自然科学版)2019年第6期

论文作者:王梦寒 杨永超 郭涛 王周田 周文武 肖贵乾

文章页码:1298 - 1306

关键词:预成形;遗传算法;协同仿真;有限元分析;整体叶盘

Key words:pre-forming; genetic algorithm; cooperative simulation; finite element analysis; blisk

摘    要:为了保证航空发动机盘类锻件组织变形均匀,提高人工模拟效率,提出基于多软件协同仿真的回转体类锻件预成形模具智能优化算法。首先,利用CATIA构建预锻模具的参数化几何模型,并用Deform-2D计算终锻过程中锻件等效应变,然后使用MATLAB的遗传算法工具箱作为控制模块进行智能化控制。其次,编写3个软件的接口程序,使3个软件之间实现自动、协同、实时动态优化。最后,将该优化算法应用于钛合金整体叶盘的生产试制。研究结果表明:该优化系统具有良好的智能性和鲁棒性,优化后的锻件内部等效应变在理想区间(0.45~1.05)所占比例由54.8%提高到了94.3%,并且通过产品试制测试零件性能满足要求。

Abstract: In order to ensure more uniformity microstructure distribution of forging and improve the efficiency of artificial simulation of Aeroengine disk parts, an intelligent optimization algorithm for pre-forming dies based on multi-software collaborative simulation was developed. Firstly, the parametric modeling was realized by CATIA software and the effective strain distribution of forging was simulated by DEFORM-2D. Secondly, Genetic Algorithm toolbox embedded in MATLAB was used as a controller which controls the whole optimization process automatically. An automatic, cooperative and real-time dynamic optimization process was realized by coding corresponding interface program. Finally, the optimization algorithm was applied to the production of titanium alloy blisk. The results indicate that the optimization system has a good intelligence and robustness, the proportion of the internal effective strain value in the ideal range (0.45-1.05) of the optimized forgings increased from 54.8% to 94.3%, and the performance of the parts meets the requirements.

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号