简介概要

基于参数动态调整的多目标差分进化算法

来源期刊:控制与决策2017年第11期

论文作者:侯莹 韩红桂 乔俊飞

文章页码:1985 - 1990

关键词:多目标优化;差分进化算法;参数动态调整;自适应;

摘    要:针对多目标差分进化算法最优解难以获取的问题,提出一种基于参数动态调整的多目标差分进化(AMODE)算法.AMODE算法通过设计变异率和交叉率的自适应调整策略,实现进化过程中变异率和交叉率的动态调整,均衡多目标差分进化算法的局部搜索能力和全局探索能力,获得收敛性、多样性和均匀性较好的最优解.实验结果表明,基于参数动态调整的AMODE算法能够有效改善多目标差分进化算法的逼近能力(IGD)和均匀性(SP),具有较好的优化效果.

详情信息展示

基于参数动态调整的多目标差分进化算法

侯莹,韩红桂,乔俊飞

摘 要:针对多目标差分进化算法最优解难以获取的问题,提出一种基于参数动态调整的多目标差分进化(AMODE)算法.AMODE算法通过设计变异率和交叉率的自适应调整策略,实现进化过程中变异率和交叉率的动态调整,均衡多目标差分进化算法的局部搜索能力和全局探索能力,获得收敛性、多样性和均匀性较好的最优解.实验结果表明,基于参数动态调整的AMODE算法能够有效改善多目标差分进化算法的逼近能力(IGD)和均匀性(SP),具有较好的优化效果.

关键词:多目标优化;差分进化算法;参数动态调整;自适应;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号