基于参数动态调整的多目标差分进化算法
来源期刊:控制与决策2017年第11期
论文作者:侯莹 韩红桂 乔俊飞
文章页码:1985 - 1990
关键词:多目标优化;差分进化算法;参数动态调整;自适应;
摘 要:针对多目标差分进化算法最优解难以获取的问题,提出一种基于参数动态调整的多目标差分进化(AMODE)算法.AMODE算法通过设计变异率和交叉率的自适应调整策略,实现进化过程中变异率和交叉率的动态调整,均衡多目标差分进化算法的局部搜索能力和全局探索能力,获得收敛性、多样性和均匀性较好的最优解.实验结果表明,基于参数动态调整的AMODE算法能够有效改善多目标差分进化算法的逼近能力(IGD)和均匀性(SP),具有较好的优化效果.
侯莹,韩红桂,乔俊飞
摘 要:针对多目标差分进化算法最优解难以获取的问题,提出一种基于参数动态调整的多目标差分进化(AMODE)算法.AMODE算法通过设计变异率和交叉率的自适应调整策略,实现进化过程中变异率和交叉率的动态调整,均衡多目标差分进化算法的局部搜索能力和全局探索能力,获得收敛性、多样性和均匀性较好的最优解.实验结果表明,基于参数动态调整的AMODE算法能够有效改善多目标差分进化算法的逼近能力(IGD)和均匀性(SP),具有较好的优化效果.
关键词:多目标优化;差分进化算法;参数动态调整;自适应;