基于核模糊聚类的多模型LSSVM回归建模
来源期刊:控制与决策2008年第5期
论文作者:李卫 杨煜普 王娜
文章页码:560 - 1128
关键词:核模糊聚类;多模型;最小二乘支持向量机;
摘 要:针对大规模数据采用单模型回归存在精度差和计算量较大的问题,提出一种基于核模糊聚类的多模型最小二乘支持向量回归建模方法.该方法首先使用基于条件正定核的模糊C均值聚类算法对数据集做出聚类划分;然后针对每个聚类做最小二乘支持向量回归估计;同时根据每个聚类内数据分布的特征,给出了一种简单的核参数选择方法.利用数值仿真实验进行非线性函数估计,实验结果表明了所提出的方法具有良好的精度和泛化能力.
李卫,杨煜普,王娜
摘 要:针对大规模数据采用单模型回归存在精度差和计算量较大的问题,提出一种基于核模糊聚类的多模型最小二乘支持向量回归建模方法.该方法首先使用基于条件正定核的模糊C均值聚类算法对数据集做出聚类划分;然后针对每个聚类做最小二乘支持向量回归估计;同时根据每个聚类内数据分布的特征,给出了一种简单的核参数选择方法.利用数值仿真实验进行非线性函数估计,实验结果表明了所提出的方法具有良好的精度和泛化能力.
关键词:核模糊聚类;多模型;最小二乘支持向量机;