简介概要

基于LS-SVM的矿井巷道场强预测

来源期刊:工矿自动化2014年第10期

论文作者:王安义 郭世坤

文章页码:36 - 40

关键词:矿井巷道;场强;预测模型;最小二乘支持向量机;

摘    要:针对目前矿井巷道场强预测精度低的问题,提出采用最小二乘支持向量机方法建立预测模型,以某巷道实测数据作为训练样本,对矿井巷道场强进行预测;详细分析了训练集构造和参数选择对预测效果的影响。仿真结果表明,LS-SVM预测模型较双斜率模型和对数校正模型具有更高的预测精度。

详情信息展示

基于LS-SVM的矿井巷道场强预测

王安义,郭世坤

西安科技大学通信与信息工程学院

摘 要:针对目前矿井巷道场强预测精度低的问题,提出采用最小二乘支持向量机方法建立预测模型,以某巷道实测数据作为训练样本,对矿井巷道场强进行预测;详细分析了训练集构造和参数选择对预测效果的影响。仿真结果表明,LS-SVM预测模型较双斜率模型和对数校正模型具有更高的预测精度。

关键词:矿井巷道;场强;预测模型;最小二乘支持向量机;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号