简介概要

Comparative Study of Bypass-Current MIG Welded–Brazed Aluminum/Galvanized Steel and Aluminum/Stainless Steel

来源期刊:Acta Metallurgica Sinica2017年第8期

论文作者:Yu-Gang Miao Guang-Yu Chen Peng Zhang Duan-Feng Han

文章页码:721 - 730

摘    要:A bypass-current metal inert-gas welding–brazing technology has been developed to join aluminum/galvanized steel and aluminum/stainless steel. Microstructure, intermetallic compounds and hardness distribution of the joints were studied by optical microscopy, scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction analysis and microhardness tests. Comparative study on both types of joints was carried out. During aluminum to galvanized steel assembling, finer seam was obtained under a more stable process. A uniform interfacial reaction layer with a thickness of 2–4 μm was formed. During aluminum to stainless steel assembling, an uneven interfacial reaction layer with a thickness of 5–45 μm was formed. Intermetallic compounds at the interface of aluminum/galvanized steel were identified as Fe–Al–Si–Zn complex phases, while Fe–Al–Cr–Ni complex phases were found at the aluminum/stainless steel interface.Microhardness of interfacial layer increases rapidly within reaction layer due to possible brittle intermetallic compounds.

详情信息展示

Comparative Study of Bypass-Current MIG Welded–Brazed Aluminum/Galvanized Steel and Aluminum/Stainless Steel

Yu-Gang Miao,Guang-Yu Chen,Peng Zhang,Duan-Feng Han

National Key Laboratory of Science and Technology on Underwater Vehicle, Harbin Engineering University

摘 要:A bypass-current metal inert-gas welding–brazing technology has been developed to join aluminum/galvanized steel and aluminum/stainless steel. Microstructure, intermetallic compounds and hardness distribution of the joints were studied by optical microscopy, scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction analysis and microhardness tests. Comparative study on both types of joints was carried out. During aluminum to galvanized steel assembling, finer seam was obtained under a more stable process. A uniform interfacial reaction layer with a thickness of 2–4 μm was formed. During aluminum to stainless steel assembling, an uneven interfacial reaction layer with a thickness of 5–45 μm was formed. Intermetallic compounds at the interface of aluminum/galvanized steel were identified as Fe–Al–Si–Zn complex phases, while Fe–Al–Cr–Ni complex phases were found at the aluminum/stainless steel interface.Microhardness of interfacial layer increases rapidly within reaction layer due to possible brittle intermetallic compounds.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号