简介概要

Lattice dynamics of FeMnP0.5Si0.5 compound from first principles calculation

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2019年第1期

论文作者:B.Wurentuya Shuang Ma B.Narsu O.Tegus Zhidong Zhang

文章页码:127 - 133

摘    要:Understanding the role of lattice vibrations on first-order magnetic transitions is essential for their fundamental description, as well as for the optimization of the related functional properties. Here, we present a first principles study on the lattice dynamics of the MnFeP0.5Si0.5 compound. The phonon spectra are obtained by Density Functional Theory(DFT) calculations in combination with frozen phonon method.DFT calculations reproduce most of the features observed in experiments including the lattice softening across the magnetic phase transition and the pronounced shift of phonon peak. The site projected phonon density of states(pDOS) shows that the local vibrations of Mn atoms have an essential contribution to the overall lattice softening. Moreover, the local lattice vibrations of Mn atoms are rather featureless in the paramagnetic state(PM) and thus the total pDOS evolution across the transition appears to be dominated by Fe. The lattice vibrations of both Fe and Mn in the PM state are very sensitive to the local environment,which shows that the magnetic order and the local chemical environment are strongly coupled in this compound.

详情信息展示

Lattice dynamics of FeMnP0.5Si0.5 compound from first principles calculation

B.Wurentuya1,2,Shuang Ma2,B.Narsu2,O.Tegus2,Zhidong Zhang1

1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, and University of Chinese Academy of Sciences2. College of Physics and Electronic Information, Inner Mongolia Normal University

摘 要:Understanding the role of lattice vibrations on first-order magnetic transitions is essential for their fundamental description, as well as for the optimization of the related functional properties. Here, we present a first principles study on the lattice dynamics of the MnFeP0.5Si0.5 compound. The phonon spectra are obtained by Density Functional Theory(DFT) calculations in combination with frozen phonon method.DFT calculations reproduce most of the features observed in experiments including the lattice softening across the magnetic phase transition and the pronounced shift of phonon peak. The site projected phonon density of states(pDOS) shows that the local vibrations of Mn atoms have an essential contribution to the overall lattice softening. Moreover, the local lattice vibrations of Mn atoms are rather featureless in the paramagnetic state(PM) and thus the total pDOS evolution across the transition appears to be dominated by Fe. The lattice vibrations of both Fe and Mn in the PM state are very sensitive to the local environment,which shows that the magnetic order and the local chemical environment are strongly coupled in this compound.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号