DOI: 10.11817/j.ysxb.1004.0609.2020-37619
ZIF-67衍生纳米磷化钴催化硼氢化钠水解制氢
杨玉美,石倩玉,于雅娜,王小萌,赵蔚然,魏 磊
(廊坊师范学院 化学与材料科学学院,廊坊 065000)
摘 要:通过液相自组装合成沸石咪唑酯型金属有机骨架ZIF-67,将ZIF-67与次亚磷酸钠均匀混合后经气相磷化处理制得纳米磷化钴催化剂,并用于催化硼氢化钠水解制氢。考察不同混合比例对催化剂成分及性能的影响,探究碱性硼氢化钠溶液组成与反应温度对催化剂性能的影响。采用场发射扫描电镜(FE-SEM)、能谱仪(EDS)、X射线衍射(XRD)、比表面积分析(BET)对材料进行表征。结果表明:当ZIF-67与次亚磷酸钠按质量比1:4反应时所得纳米Co2P催化剂性能最佳;该催化剂最适反应液组成为4% NaBH4-8% NaOH(质量分数),产氢速率高达4.95 L/(min·g) (25 ℃);表观活化能为64.2 kJ/mol。与文献同类催化剂相比,所制备纳米Co2P催化剂对NaBH4水解制氢具有更高的催化活性。
关键词: 磷化钴;ZIF-67;气相磷化;硼氢化钠;催化水解
文章编号:1004-0609(2020)-08-1982-08 中图分类号:O643 文献标志码:A
近些年,能源紧缺和环境污染问题日益突显,寻求新型可再生的绿色、高效能源已在全球范围内成为共识。氢能源作为新能源家族中的一员发挥着越来越重要的作用[1-2]。氢能源的开发和利用是“氢经济”社会的主要供能方式[3]。 由于自然界中游离的氢极少,所以氢气的安全获取在氢能源链中居于首位。工业上,常通过天然气、醇类、醚类的催化重整反应生产氢气[4]。但是,重整反应温度较高(500~700 ℃),且重整气中含有大量CO和CO2,杂质气体对氢燃料电池中电极催化剂的毒害作用尤为严重[5]。对于小规模供氢和便携式燃料电池系统而言,基于储氢化合物分解的供氢方式更为适用。硼氢化钠(NaBH4)是一种安全无毒的储氢物质,其含氢量高达10.6%(质量分数),室温下水解产氢简便易 控[6-7]。更重要的是,氢气是唯一的气体产物,因而无任何杂质气体(见式(1))。另外,反应副产物NaBO2可回收再合成NaBH4[8]。
NaBH4+H2O→NaBO2+H2↑ (1)
为了抑制NaBH
4自水解现象,NaBH
4溶液中常含有一定量的碱性物质(如NaOH)。在催化剂作用下,碱性NaBH
4溶液即可室温下按需释氢。目前,研究较多的催化剂为非均相催化剂,主要包括贵金属催化剂(如Pt、Ru、Au)、非贵金属催化剂(如Co、Ni)和金属氧化物(如CoO、Co
3O
4)等三大类
[9-10]。通常,贵金属储量少、成本高,金属氧化物在催化过程中存在较长引发期,这些因素都限制了上述两类催化剂的实际应用。相比而言,非贵金属催化剂综合性能和经济性更为适宜,其中以钴及其合金催化剂性能最佳
[10]。目前,已报道的钴基催化剂有CoB
[11]、CoP
[12]、Co-Fe-B
[13]、Co-Mo-B
[14]、Co-W-B
[15]、Co-Ni-B-P
[16]、Co-Ni-Mo-P
[17]等。大量研究表明,过渡金属和非金属元素的掺杂可显著提高纯钴催化剂的综合性能。 ZIF-67为沸石咪唑酯型金属有机骨架化合物,是由Co
2+和2-甲基咪唑通过配位键自组装而成的高比表面积微/介孔晶体材料,在催化、吸附、电化学、生物医学等众多领域获得了广泛应用。本工作目的在于通过气相磷化将ZIF-67转化为对NaBH
4水解制氢具有优异活性的磷化钴催化剂,并探究其最佳制备条件和使用条件。
1 实验
1.1 材料
实验所用主要试剂为硼氢化钠(NaBH4,AR,天津化学试剂供销公司生产)、次亚磷酸钠(NaH2PO2·H2O,AR,天津化学试剂供销公司生产)、氢氧化钠(NaOH,AR,天津化学试剂供销公司生产)、六水合硝酸钴(Co(NO3)2·6H2O,上海阿拉丁试剂公司生产)、2-甲基咪唑(C4H6N2,98%,上海阿拉丁试剂公司生产)。去离子水为实验室自制,电阻率大于18 MW·cm。
1.2 催化剂制备
将0.33 g 2-甲基咪唑溶于25 mL无水甲醇中获得溶液A,将0.29 g 六水合硝酸钴溶于25 mL无水甲醇中获得溶液B。将溶液B倒入溶液A中得深紫色溶液,并连续搅拌30 min。静置24 h后烧杯底部生成的沉淀物即为ZIF-67,对沉淀物进行过滤、甲醇洗涤后60 ℃下干燥12 h。 对ZIF-67进行气相磷化制备纳米磷化钴催化剂的具体步骤如下。将0.10 g ZIF-67与0.20 g次亚磷酸钠固体均匀混合后转移至瓷舟内,在氮气环境下5 ℃/min升温至300 ℃,并保温2 h。将磷化后黑色产物超声分散于去离子水中以脱除可溶性无机盐类,经过滤、洗涤、真空干燥后得磷化钴样品(记作CoP-1)。在其它条件不变的情况下,改变ZIF-67与次亚磷酸钠的质量比分别为1:4和1:6可制得另外两种催化剂,分别记作CoP-2和CoP-3。
1.3 催化剂表征与性能测试
通过X射线衍射(XRD,Bruker D8 Advance型)对催化剂物相进行鉴别,使用Cu Kα射线(λ=0.154 nm)。使用美国麦克斯ASAP 2020全自动比表面及微/介孔物理吸附分析仪对材料的比表面积及孔径分布进行测定。通过场发射扫描电镜(FE-SEM, ZEISS SUPRA 55型)对催化剂微观形貌进行表征。通过能谱仪(EDS,OXFORD INCAx-act)对催化剂的元素组成进行分析。 本实验中,所制备磷化钴催化剂对NaBH4水解的催化活性通过产氢速率vH2(Hydrogen generation rate,L·min-1·g-1)予以体现。体系中氢气生成量通过常规排水法进行测定,所用装置如文献[18]所示。将10 mg催化剂加入到3 mL NaBH4-NaOH反应液中开始计时,间隔15 s记录一次氢气累积产量。测试过程中通过恒温水浴来精确控制反应温度。
2 结果与讨论
2.1 ZIF-67物理表征
通过液相自组装过程制备了ZIF-67紫色粉末,其微观形貌如图1所示。由图1可知,所制备ZIF-67呈规则的十二面体结构,粒径范围0.5~1.0 μm。图2所示为所制备ZIF-67的XRD谱,在2q为7.34°、10.34°、12.70°、14.65°、16.44°、17.99°、22.06°、24.44°、26.63°和29.61°处的衍射峰分别对应ZIF-67的(011)、(002)、(112)、(022)、(013)、(222)、(114)、(233)、(134)和(044)晶面,为类分子筛晶体物质,与文献[19-20]报道一致。同时,所制备的ZIF-67结晶度较好,未发现其它杂相存在。图3所示为所制备ZIF-67的低温氮气吸/脱附等温线,根据BET方程算得其比表面积约2250 m2/g。另外,在吸/脱附等温线间存在明显的回滞环,这说明所制备ZIF-67内部存在丰富孔洞,由BJH模型算得其平均孔径为1.07 nm,且孔径分布较窄,属于微孔材料。
图1 所制备ZIF-67的FE-SEM微观形貌
Fig. 1 FE-SEM micrograph of prepared ZIF-67
图2 所制备ZIF-67的XRD谱
Fig. 2 XRD pattern of prepared ZIF-67
图3 所制备ZIF-67吸/脱附等温线及孔径分布
Fig. 3 Adsorption/desorption isotherms and pore-size distribution of prepared ZIF-67
2.2 催化剂物相与微观形貌分析
实验首先通过XRD技术对所制备的CoP-1、CoP-2和CoP-3进行物相分析以确定其组成,相应谱图如图4所示。由图4可知,CoP-1与CoP-2的化学组份主要为Co2P,在2q为40.8°、44.8°、48.4°和52.9°处的衍射峰分别对应Co2P的(111)、(021)、(120)和(002) 晶面,与PDF卡片54-0413相一致[21-22]。从XRD谱图看出,CoP-2的衍射峰略强于CoP-1的,这说明CoP-2的结晶度较CoP-1的有所提高。CoP-3主要由CoP化合物组成,在2q为31.9°、48.4°、52.2°和56.7°处的衍射峰分别对应CoP的(002)、(202)、(103)和(013)晶面,与PDF卡片65-2593相一致[23]。结合实验条件可知,在次亚磷酸钠用量较少时,生成化合物为Co2P,随着次亚磷酸钠用量增加将转化为CoP化合物。
图4 所制备磷化钴催化剂的XRD谱
Fig. 4 XRD patterns of prepared cobalt phosphides
图5所示为所制备CoP-1、CoP-2和CoP-3的FE-SEM微观形貌与EDS元素分析结果。由图5(a),(c),(e)可知,所制备3种磷化钴催化剂的粒径范围在50~100 nm,约是ZIF-67前驱体的1/10,且无规则多面体外观。造成上述差异的主要原因在于磷化过程中ZIF-67金属有机骨架的坍塌和磷化钴纳米晶的形成与生长。由图5(b),(d),(f)可知,3种催化剂中Co-P元素比例基本上与XRD结果相一致,催化剂中少量的氧元素应归结为存放和制样过程中催化剂表面的微弱氧化。
2.3 纳米磷化钴催化NaBH4水解制氢性能
首先测试所制备的三种磷化钴对2% NaBH4-2% NaOH反应液体系的催化产氢速率,具体结果如图6所示。对线性数据点进行拟合后算得,ZIF-67、CoP-1、CoP-2和CoP-3的vH2分别为0.41、1.82、3.53、0.52 L/(min·g)。上述结果表明,磷化钴的结晶度和元素比例对其催化性能影响显著,按照ZIF-67与次亚磷酸钠质量比1:4投料制备的CoP-2催化活性最佳。后续实验中,将着重探究反应液组成、反应温度、循环使用等条件对CoP-2催化性能的影响规律。 图7所示为不同NaBH4浓度对CoP-2催化活性的影响,vH2高低体现了催化剂活性的强弱。随着NaBH4浓度的增加,体系的vH2呈现出先增加后减小的趋 势。当NaBH4浓度为4%时,体系的vH2达到最大值3.66 L/(min·g)。造成上述现象的主要原因可归纳为:1) NaBH4低浓度时,催化剂表面反应物较少,活性位点利用率不充分;2) NaBH4浓度增加至某一最优值时,催化剂活性位点被充分利用,且催化剂表面气-液-固三相扩散传质效率较高;3) 当NaBH4浓度过高时,水解产物NaBO2在催化剂表面脱附受阻,NaBH4向催化剂表面扩散阻力增大[11, 14, 17]。因此,在后续实验中固定NaBH4浓度为4%。 当NaBH4浓度为4%时,NaOH浓度对CoP-2 催化活性的影响如图8所示。随着NaOH浓度的增 加,体系的vH2同样呈现先增加后减小的趋势,在NaOH浓度为8%时,vH2最大值为4.95 L/(min·g)。HOLBROOK等[24]在研究催化剂表面硼氢根水解机理时发现,适当提高反应体系中NaOH含量可进一步加快NaBH4水解速率。然而,高浓度的OH-会与BH4-竞争催化剂活性位点,导致水解物NaBO2溶解度降低,在催化剂表面脱除困难而遮盖活性位,从而使催化剂活性下降[17, 25]。
图5 所制备磷化钴的微观形貌及元素分析结果
Fig. 5 FE-SEM micrographs and EDS results of prepared cobalt phosphides
图6 所制备ZIF-67及磷化钴催化硼氢化钠水解产氢性能(2% NaBH4-2% NaOH,25 ℃)
Fig. 6 Catalytic performance of prepared ZIF-67 and cobalt phosphides for hydrogen generation from sodium borohydride hydrolysis (2% NaBH4-2% NaOH, 25 ℃)
由图7和图8可知,当反应液组成为4% NaBH4- 8% NaOH时,所制备CoP-2表现出最佳的催化活性。在该反应液条件下,进一步考察了反应温度对催化剂活性的影响,具体结果如图9所示。随着反应温度的升高,体系vH2逐渐增大,这符合一般的化学反应规律。当反应温度分别为15、20、25、30 ℃时,体系的vH2分别为1.80、2.68、4.95、6.40 L/(min·g)。如图9(b),对ln vH2与1/T进行线性拟合,根据阿伦尼乌斯公式算得该反应体系的表观活化能为64.2 kJ/mol。
目前,钴基磷化物的制备方法主要有化学还原 法[16]、化学镀[17, 26-28]、电镀[29-30]、气相磷化[31-32]等。表1所列为文献中常见钴基磷化物催化剂的制备方法及其催化NaBH4水解制氢性能,说明通过对ZIF-67磷化制备的纳米Co2P对NaBH4水解制氢具有更高的催化活性。在载体表面沉积钴基催化剂通常采用化学镀或电镀法,所得镀层厚且致密,只有表层活性位点与反应物接触,因而催化剂整体利用率并不高。相比之下,气相磷化主要利用次亚磷酸钠热分解产物PH3对钴基前驱体进行还原和磷化,该钴基前驱体可以为负载型或非负载型微/纳米颗粒。因而,气相磷化后的磷化钴催化剂仍保持初始的微观颗粒状态,与反应液接触面积大,活性位利用率更高。
图7 氢气产量与反应时间的关系以及不同NaBH4浓度下HGR值(w(NaOH)=2%,25 ℃)
Fig. 7 Hydrogen volume as a function of reaction time(a) and HGR values under different NaBH4 concentrations(b) (w(NaOH)=2%, 25 ℃)
图8 氢气产量与反应时间的关系以及不同NaOH浓度下HGR值(w(NaBH4)=4%,25 ℃)
Fig. 8 Hydrogen volume as a function of reaction time(a) and HGR values under different NaOH concentrations(b) (w(NaBH4)=4%, 25 ℃)
图9 反应温度对CoP-2催化NaBH4产氢性能的影响以及阿伦尼乌斯曲线(4% NaBH4-8% NaOH)
Fig. 9 Effect of reaction temperature on catalytic performance of CoP-2 for NaBH4 hydrolysis(a) and Arrhenius plots for apparent activation energy(b) (4% NaBH4-8% NaOH)
表1 不同钴基催化剂对NaBH4水解制氢的性能对比
Table 1 Comparison of catalytic performance of different cobalt-based catalysts for NaBH4 hydrolysis
3 结论
1) 采用气相磷化法将沸石咪唑酯型金属有机骨架ZIF-67成功转化为对NaBH4水解具有优异活性的纳米磷化钴催化剂。 2) ZIF-67与次亚磷酸钠混合比例对磷化钴的成分及催化活性影响显著;当ZIF-67与次亚磷酸钠质量比为1:4时,所得Co2P纳米粒子对NaBH4水解制氢的催化活性最高;当反应液组成为4% NaBH4-8% NaOH时,所制备纳米Co2P催化活性最佳,且远高于文献中所报道同类催化剂的活性。 3) ZIF-67经气相磷化后形成的纳米磷化钴催化剂在硼氢化钠水解制氢方面具有良好的应用前景。
REFERENCES
[1] DUNN S. Hydrogen futures: Toward a sustainable energy system[J]. International Journal of Hydrogen Energy, 2002, 27(3): 235-264.
[2] MOMIRLAN M, VEZIROGLU T N. The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet[J]. International Journal of Hydrogen Energy, 2005, 30(7): 795-802.
[3] FERNANDES T, CHEN F, CARVALHO M G. Hysociety in support of European hydrogen projects and EC policy[J]. International Journal of Hydrogen Energy, 2005, 30(3): 239-245.
[4] 吴 川, 张华民, 衣宝廉. 化学制氢技术研究进展[J]. 化学进展, 2005, 17(3): 423-429.
WU Chuan, ZHANG Hua-min, YI Bao-lian. Recent advances in hydrogen generation with chemical methods[J]. Progree in Chemistry, 2005, 17(3): 423-429.
[5] BRANKOVIC S R, WANG J X, ADZIC R R. Pt submonolayers on Ru nanoparticles: A novel low Pt loading, high CO tolerance fuel cell electrocatalyst[J]. Elechemical and Solid-State Letters, 2001, 4(12): 217-220.
[6] MUIR S S, YAO X. Progress in sodium borohydride as a hydrogen storage material: Development of hydrolysis catalysts and reaction systems[J]. International Journal of Hydrogen Energy, 2011, 36(10): 5983-5997.
[7] DEMIRCI U B, AKDIM O, ANDRIEUX J, HANNAUER J, CHAMOUN R, MIELE P. Sodium borohydride hydrolysis as hydrogen generator: Issues, state of the art and applicability upstream from a fuel cell[J]. Fuel Cell, 2010, 10(3): 335-350.
[8] LANG C, JIA Y, LIU J, WANG H, OUYANG L, ZHU M, YAO X. NaBH4 regeneration from NaBO2 by high-energy ball milling and its plausible mechanism[J]. International Journal of Hydrogen Energy, 2017, 42(18): 13127-13135.
[9] BRACK P, DANN S E, WIJAYANTHA K G U. Heterogeneous and homogenous catalysts for hydrogen generation by hydrolysis of aqueous sodium borohydride (NaBH4) solutions[J]. Energy Science Engineering, 2015, 3(3): 174-188.
[10] DEMIRCI U B, AKDIM O, HANNAUER J, CHAMOUN R, MIELE P. Cobalt, a reactive metal in releasing hydrogen from sodium borohydride by hydrolysis: A short review and a research perspective[J]. Science China Chemistry, 2010, 53(9): 1870-1879.
[11] JEONG S U, KIM R K, CHO E A, KIM H J, NAM S W, OH I H, HONG S A, KIM S H. A study on hydrogen generation from NaBH4 solution using the high-performance Co-B catalyst[J]. Journal of Power Sources, 2005, 144(1): 129-134.
[12] OH T H, GUANG B G, KIM H, KWON S. Sodium borohydride hydrogen generator using Co-P/Ni foam catalysts for 200 W proton exchange membrane fuel cell system[J]. Energy, 2015, 90: 1163-1170.
[13] WANG Y P, WANG Y J, REN Q L, LI L, JIAO L F, SONG D W, LIU G, HAN Y, YUAN H T. Ultrafine amorphous Co-Fe-B catalysts for the hydrolysis of NaBH4 solution to generate hydrogen for PEMFC[J]. Fuel cells, 2010, 10(1): 132-138.
[14] ZHANG D W, KANG Q, MUIR S S, YAO X, DAI H B, MA G L, WANG P. Evaluation of a cobalt-molybdenum-boron catalyst for hydrogen generation of alkaline sodium borohydride solution-aluminum powder system[J]. Journal of Power Sources, 2013, 224: 304-311.
[15] DAI H B, LIANG Y, WANG P. Effect of trapped hydrogen on the induction period of cobalt-tungsten-boron/nickel foam catalyst in catalytic hydrolysis reaction of sodium borohydride[J]. Catalysis Today, 2011, 170(1): 27-32.
[16] FERNANDES R, PATEL N, MIOTELLO A. Efficient catalytic properties of Co-Ni-P-B catalyst powder for hydrogen generation by hydrolysis of alkaline solution of NaBH4[J]. International Journal of Hydrogen Energy, 2009, 34(7): 2893-2900.
[17] WANG L, LI Z, ZHANG P, WANG G , XIE G . Hydrogen generation from alkaline NaBH4 solution using Co-Ni-Mo-P/g -Al2O3 catalysts[J]. International Journal of Hydrogen Energy, 2016, 41( ): 1468-1476.
[18] HUANG Y, WANG Y, ZHAO R, SHEN P K, WEI Z. Accurately measuring the hydrogen generation rate for hydrolysis of sodium borohydride on multiwalled carbon nanotubes/Co-B catalysts[J]. International Journal of Hydrogen Energy, 2008, 33(23): 7110-7115.
[19] GUO X, XING T, LOU Y, CHEN J. Controlling ZIF-67 crystals formation through various cobalt sources in aqueous solution[J]. Journal of Solid State Chemistry, 2016, 235: 107-112.
[20] QIAN J, SUN F, QIN L. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals[J]. Materials Letters, 2012, 82: 220-223.
[21] SONG M, HE Y, ZHANG M, ZHENG X, WANG Y, ZHANG J, HAN X, ZHONG C, HU W, DENG Y. Controllable synthesis of Co2P nanorods as high-efficienct bifunctional electrocatalyst for overall water splitting[J]. Journal of Power Sources, 2018, 402: 345-352.
[22] HUANG X, WU D, CHENG D. Porous Co2P nanowires as high efficient bifunctional catalyst for 4-nitrophenol reduction and sodium borohydride[J]. Journal of Colloid and Interface Science, 2017, 507: 429-436.
[23] YANG X, LU A Y, ZHU Y, HEDHILI M N, MIN S, HUANG K W, HAN Y, LI L J. CoP nanosheet assembly grown on carbon cloth: A highly efficient electrocatalyst for hydrogen generation[J]. Nano Energy, 2015, 15: 634-641.
[24] HOLBROOK K A, TWIST P J. Hydrolysis of the borohydride ion catalysed by metal-boron alloys[J]. Journal of the Chemical Society, 1971, 15: 890-894.
[25] DING X L, YUAN X, JIA C, MA Z. Hydrogen generation from catalytic hydrolysis of sodium borohydride solution using cobalt-copper-boride (Co-Cu-B) catalysts[J]. International Journal of Hydrogen Energy, 2010, 35(20): 11077-11084.
[26] 蔡 凡, 沈晓晨, 戴 敏, 高 鸣, 王志斌, 赵 斌, 丁维平. CoB/C催化硼氢化钠水解制氢的性能[J]. 无机化学学报, 2013, 29(4): 689-696.
CAI Fan, SHEN Xiao-chen, DAI Min, WANG Zhi-bin, ZHAO Bin, DING Wei-ping. Catalytic performance of CoB/C for hydrolysis of NaBH4 aqueous solution[J]. Chinese Journal of Inorgnic Chemistry, 2013, 29(4): 689-696.
[27] WANG Y, QI K, WU S, CAO Z, ZHANG K, LU Y, LIU H. Preparation, characterization and catalytic sodium borohydride hydrolysis of nanostructured cobalt- phosphorous catalysts[J]. Journal of Power Sources, 2015, 284: 130-137.
[28] EOM K S, CHO K W, KWON H S. Effects of electroless deposition conditions on microstructures of cobalt- phosphorous catalysts and their hydrogen generation properties in alkaline sodium borohydride solution[J]. Journal of Power Sources, 2008, 180(1): 484-490.
[29] CHO K W, KWON H S. Effects of electrodeposited Co and Co-P catalysts on the hydrogen generation properties from hydrolysis of alkaline sodium borohydride solution[J]. Catalysis Today, 2007, 120(3/4): 298-304.
[30] KIM D R, CHO K W, CHOI Y I, PARK C J. Fabrication of porous Co-Ni-P catalysts by electrodeposition and their catalytic characteristics for the generation of hydrogen from an alkaline NaBH4 solution[J]. International Journal of Hydrogen Energy, 2009, 34(6): 2622-2630.
[31] QIN Z, CHEN Y, HUANG Z, SU J, GUO L. A bifunctional NiCoP-based core/shell cocatalyst to promote separate photocatalytic hydrogen and oxygen generation over graphitic carbon nitride[J]. Journal of Materials Chemistry A, 2017, 5; 19025-19035.
[32] ZHOU X, MENG X F, WANG J M, SHANG N Z, FENG T, GAO Z Y, ZHANG H X, DIING X L, GAO S T, FENG C, WANG C. Boron nitride supported NiCoP nanoparticles as noble metal-free catalyst for highly efficient hydrogen generation from ammonia borane[J]. International Journal of Hydrogen Energy, 2019, 44(10): 4764-4770.
ZIF-67 derived cobalt phosphides nanocatalysts for catalytic hydrolysis of sodium borohydride to generate hydrogen
YANG Yu-mei, SHI Qian-yu, YU Ya-na, WANG Xiao-meng, ZHAO Wei-ran, WEI Lei
(College of Chemistry and Materials Science, Langfang Normal University, Langfang 065000, China)
Abstract: Zeolitic imidazolate framework of ZIF-67 was synthesized by self-assembly process. For catalytic hydrolysis of sodium borohydride (NaBH4), cobalt phosphides nanocatalysts were prepared from the mixture of ZIF-67 and sodium hypophosphite (NaH2PO2) by solid-state phosphorization treatment. In this work, effects of the mass ratio of ZIF-67 and NaH2PO2 on catalyst component and performance were investigated; moreover, influences of alkaline NaBH4 solution component and reaction temperature on catalyst performance were studied. For material characterization, field-emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and specific surface area analysis (BET) were conducted. Experimental results indicate that optimal ratio of ZIF-67 and NaH2PO2 is 1:4, resulting in a highly efficient Co2P nanocatalyst. It is found that the optimal solution component are 4% NaBH4-8% NaOH (mass fraction), giving a hydrogen generation rate up to 4.95 L/(min·g) (25 ℃) and apparent activation energy of 64.2 kJ/mol. Compared with similar catalysts in literature, the prepared Co2P nanocatalyst presents much higher activity for sodium borohydride hydrolysis to generate hydrogen.
Key words: cobalt phosphide; ZIF-67; vapor phase phosphorization; sodium borohydride; catalytic hydrolysis
Foundation item: Project(B2017408042) supported by the Nature Science Foundation of Hebei Province, China
Received date: 2019-08-16; Accepted date: 2019-12-02
Corresponding author: WEI Lei; Tel: +86-316-2188370; E-mail: weilei@lfnu.edu.cn
(编辑 王 超)
基金项目:河北省自然科学基金资助项目(B2017408042)
收稿日期:2019-08-16;修订日期:2019-12-02
通信作者:魏 磊,副教授,博士;电话:0316-2188370;E-mail:weilei@lfnu.edu.cn