简介概要

Effect of calcination temperature on steam reforming activity of Ni-based pyrochlore catalysts

来源期刊:Journal of Rare Earths2020年第7期

论文作者:Daniel J.Haynes Dushyant Shekhawat David Berry Amitava Roy James J.Spivey

文章页码:711 - 718

摘    要:This work served as the second part of a study evaluating the effect of calcination temperature(700-1000℃) on Ni-based lanthanum zirconate pyrochlore catalysts for methane steam reforming.A previous study(Haynes et al.Ceram.Int.2017(43) 16744) provided a thorough characterization of the material properties for the catalysts used here,and this study focuses on the evaluation of catalytic activity.The activity was assessed by two different experimental studies:the effect of reaction temperature using a temperature programmed surface reaction(TPSR),and the effect of reaction pressure.The results demonstrate a complex interaction between the Ni particles and surface LaOx species under the methane steam reforming conditions.Specifically,the material calcined at the lowest temperature(700℃) possesses the highest activity and selectivity,which is attributed to smaller and more welldispersed Ni particles on the surface,and,more importantly,a lesser degree La enrichment at the surface.All catalysts were deactivated by steam to NiO under all conditions tested,but at certain low reaction pressure(p=0.23 MPa) conditions the materials calcined at 700-900℃ are able to completely recover equilibrium activity in-situ that is then robust and stable under both low and high reaction pressures(p=1.8 MPa) suggesting the formation of a synergistic relationship between Ni and La for syngas production.However,exposure of a fresh material to high reaction pressures leads to a rapid and irreversible loss in both CH4 conversion and syngas selectivity whether in the fresh(no pretreatment),or pretreated(steam,H2 or Ar only at 800℃) form for any catalyst.The mechanism for deactivation appears to be due to the presence of LaOx species that become mobile,possibly by the formation of La-OH,and covers the active Ni particles and inhibits sites responsible for the CH4 decomposition.

详情信息展示

Effect of calcination temperature on steam reforming activity of Ni-based pyrochlore catalysts

Daniel J.Haynes1,Dushyant Shekhawat1,David Berry1,Amitava Roy2,James J.Spivey2

1. National Energy Technology Laboratory,U.S.Department of Energy2. Louisiana State University,Cain Department of Chemical Engineering

摘 要:This work served as the second part of a study evaluating the effect of calcination temperature(700-1000℃) on Ni-based lanthanum zirconate pyrochlore catalysts for methane steam reforming.A previous study(Haynes et al.Ceram.Int.2017(43) 16744) provided a thorough characterization of the material properties for the catalysts used here,and this study focuses on the evaluation of catalytic activity.The activity was assessed by two different experimental studies:the effect of reaction temperature using a temperature programmed surface reaction(TPSR),and the effect of reaction pressure.The results demonstrate a complex interaction between the Ni particles and surface LaOx species under the methane steam reforming conditions.Specifically,the material calcined at the lowest temperature(700℃) possesses the highest activity and selectivity,which is attributed to smaller and more welldispersed Ni particles on the surface,and,more importantly,a lesser degree La enrichment at the surface.All catalysts were deactivated by steam to NiO under all conditions tested,but at certain low reaction pressure(p=0.23 MPa) conditions the materials calcined at 700-900℃ are able to completely recover equilibrium activity in-situ that is then robust and stable under both low and high reaction pressures(p=1.8 MPa) suggesting the formation of a synergistic relationship between Ni and La for syngas production.However,exposure of a fresh material to high reaction pressures leads to a rapid and irreversible loss in both CH4 conversion and syngas selectivity whether in the fresh(no pretreatment),or pretreated(steam,H2 or Ar only at 800℃) form for any catalyst.The mechanism for deactivation appears to be due to the presence of LaOx species that become mobile,possibly by the formation of La-OH,and covers the active Ni particles and inhibits sites responsible for the CH4 decomposition.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号