简介概要

一种基于曲率极值法的LiDAR点云特征提取算法

来源期刊:中国矿业大学学报2011年第4期

论文作者:王永波 盛业华

文章页码:640 - 646

关键词:曲率极值;最小生成树;点云;特征提取;三维激光扫描;

摘    要:针对地面LiDAR(light detection and ranging)技术在三维数据采集过程中无法体现人的主观判别能力、采样数据存在大量冗余的问题,提出了一种基于曲率极值与最小生成树准则的LiDAR点云特征提取算法.通过二次曲面拟合实现对原始采样曲面的模拟与表达,估算采样表面的几何微分属性,分别基于平均曲率比较法、曲率极值法来实现特征点的初选与精选;设计并实现了一种基于最小生成树准则的特征点拓扑邻接关系的确定方法以及相应的最小生成树裁减算法,在确定特征点拓扑邻接关系的同时,依据裁减算法实现了采样地理实体表面特征的精确提取.实验证明,算法是可行、有效的,利用算法提取了LiDAR点云的特征之后,有效地增强了点云数据的表达能力,弥补了地面LiDAR技术在数据采集过程中无法体现人的主观判别能力的不足;借助于算法提取的采样地理实体表面特征来指导和约束点云数据简化过程,可在有效保留原始采样曲面重要特征的同时实现点云数据的大幅度精简.

详情信息展示

一种基于曲率极值法的LiDAR点云特征提取算法

王永波1,盛业华2

1. 中国矿业大学江苏省资源环境信息工程重点实验室国土环境与灾害监测国家测绘局重点实验室2. 南京师范大学虚拟地理环境教育部重点实验室

摘 要:针对地面LiDAR(light detection and ranging)技术在三维数据采集过程中无法体现人的主观判别能力、采样数据存在大量冗余的问题,提出了一种基于曲率极值与最小生成树准则的LiDAR点云特征提取算法.通过二次曲面拟合实现对原始采样曲面的模拟与表达,估算采样表面的几何微分属性,分别基于平均曲率比较法、曲率极值法来实现特征点的初选与精选;设计并实现了一种基于最小生成树准则的特征点拓扑邻接关系的确定方法以及相应的最小生成树裁减算法,在确定特征点拓扑邻接关系的同时,依据裁减算法实现了采样地理实体表面特征的精确提取.实验证明,算法是可行、有效的,利用算法提取了LiDAR点云的特征之后,有效地增强了点云数据的表达能力,弥补了地面LiDAR技术在数据采集过程中无法体现人的主观判别能力的不足;借助于算法提取的采样地理实体表面特征来指导和约束点云数据简化过程,可在有效保留原始采样曲面重要特征的同时实现点云数据的大幅度精简.

关键词:曲率极值;最小生成树;点云;特征提取;三维激光扫描;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号