简介概要

一种基于改进的卷积神经网络的人脸表情识别方法

来源期刊:北方工业大学学报2020年第2期

论文作者:邹建成 曹秀玲

文章页码:39 - 44

关键词:卷积神经网络;人脸表情识别;深度学习;特征提取;

摘    要:针对人脸表情识别的准确率较低、鲁棒性较差的问题,本文提出一种加深层数的卷积神经网络,将卷积神经网络LeNet的2层卷积、2层池化、一层全连接分别修改为4层卷积、4层池化、2层全连接.首先对人脸表情图像进行关键点定位、人脸裁剪、图像归一化等预处理,然后利用卷积层提取人脸图像的低维度和高维度的特征信息,池化层对提取的人脸特征信息进行降维处理.最后采用softmax分类器对训练样本图像的表情进行分类识别.为了提高表情识别的准确率,在表情训练集中加入了自制的标注图片集.仿真对比实验表明改进的模型精度更高、损失曲线更平滑,验证了改进网络的有效性.

详情信息展示

一种基于改进的卷积神经网络的人脸表情识别方法

邹建成1,曹秀玲2

1. 北方工业大学理学院2. 北方工业大学信息学院

摘 要:针对人脸表情识别的准确率较低、鲁棒性较差的问题,本文提出一种加深层数的卷积神经网络,将卷积神经网络LeNet的2层卷积、2层池化、一层全连接分别修改为4层卷积、4层池化、2层全连接.首先对人脸表情图像进行关键点定位、人脸裁剪、图像归一化等预处理,然后利用卷积层提取人脸图像的低维度和高维度的特征信息,池化层对提取的人脸特征信息进行降维处理.最后采用softmax分类器对训练样本图像的表情进行分类识别.为了提高表情识别的准确率,在表情训练集中加入了自制的标注图片集.仿真对比实验表明改进的模型精度更高、损失曲线更平滑,验证了改进网络的有效性.

关键词:卷积神经网络;人脸表情识别;深度学习;特征提取;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号