简介概要

Copper-cerium oxides supported on carbon nanomaterial for preferential oxidation of carbon monoxide

来源期刊:Journal of Rare Earths2016年第1期

论文作者:高美怡 江楠 赵宇宏 徐长进 苏海全 曾尚红

文章页码:55 - 60

摘    要:The CuxO-Ce O2/Fe@CNSs, CuxO-Ce O2/MWCNTs-Co and CuxO-Ce O2/MWCNTs-Ni catalysts were prepared by the impregnation method and characterized by transmission electron microscopy, scanning electron microscopy, X-ray powder diffraction, H2-temperature programmed reduction and N2 adsorption-desorption techniques. It was found that the Fe nanoparticles were encapsulated into the multi-layered carbon nanospheres(CNSs). However, the multi-wall carbon nanotubes(MWCNTS) were generated on the Co/Al2O3 and Ni/Al2O3 precursor. The addition of carbon nanomaterial as supports could improve structural properties and low-temperature activity of the Cu O-Ce O2 catalyst, and save the used amount of metal catalysts in the temperature range with high selectivity for CO oxidation. The copper-cerium oxides supported on carbon nanomaterial had good resistence to H2 O and CO2.

详情信息展示

Copper-cerium oxides supported on carbon nanomaterial for preferential oxidation of carbon monoxide

高美怡,江楠,赵宇宏,徐长进,苏海全,曾尚红

Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials School of Chemistry and Chemical Engineering Inner Mongolia University

摘 要:The CuxO-Ce O2/Fe@CNSs, CuxO-Ce O2/MWCNTs-Co and CuxO-Ce O2/MWCNTs-Ni catalysts were prepared by the impregnation method and characterized by transmission electron microscopy, scanning electron microscopy, X-ray powder diffraction, H2-temperature programmed reduction and N2 adsorption-desorption techniques. It was found that the Fe nanoparticles were encapsulated into the multi-layered carbon nanospheres(CNSs). However, the multi-wall carbon nanotubes(MWCNTS) were generated on the Co/Al2O3 and Ni/Al2O3 precursor. The addition of carbon nanomaterial as supports could improve structural properties and low-temperature activity of the Cu O-Ce O2 catalyst, and save the used amount of metal catalysts in the temperature range with high selectivity for CO oxidation. The copper-cerium oxides supported on carbon nanomaterial had good resistence to H2 O and CO2.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号