Room Temperature Ferromagnetism in Co-doped CuAlO2 Nanofibers Fabricated by Electrospinning
来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2015年第1期
论文作者:王宇 DONG Chengjun CHUAI Yahui 王一丁
文章页码:1 - 5
摘 要:One-dimensional, diluted magnetic semiconductor nanofibers have attracted increasing attention for their unique magnetic properties, large specific surface area, and high porosity. These qualities lead to excellent performance in magneto-optical devices, magnetic resonance imaging, ferrofluids and magnetic separation. The purpose of this study is to fabricate P-type one dimensional CuAlO2-based diluted magnetic semiconductor nanofibers. First, we fabricated Cu Al0.95Co0.05O2 nanofibers with an average diameter of 1 μm with the electrospinning method. The annealed nanofibers were thermally treated at a temperature of 1 100 ℃ and then shrunk to a diameter of about 650 nm. We used X-ray diffraction measurements and Raman spectra to confirm that the Cu Al0.95Co0.05O2 nanofibers had a single impurity free delafossite phase. The X-ray photoelectron spectroscopy analysis indicates that Co was present in the +2 oxidation state, resulting in an room temperature ferromagnetism in the Cu Al0.95Co0.05O2 fiber. This contrasts with nonmagnetism in pristine CuAlO2 fiber. The coercivity(Hc) value of 65.26 Oe and approximate saturation magnetization(Ms) of 0.012 emu/g demonstrate good evidence of ferromagnetism at room temperature for Cu Al0.95Co0.05O2 nanofibers.
王宇1,DONG Chengjun2,CHUAI Yahui1,王一丁1
1. State Key Laboratory of Integrated Optoelectronics, Jilin University2. School of Physical Science and Technology, Yunnan University
摘 要:One-dimensional, diluted magnetic semiconductor nanofibers have attracted increasing attention for their unique magnetic properties, large specific surface area, and high porosity. These qualities lead to excellent performance in magneto-optical devices, magnetic resonance imaging, ferrofluids and magnetic separation. The purpose of this study is to fabricate P-type one dimensional CuAlO2-based diluted magnetic semiconductor nanofibers. First, we fabricated Cu Al0.95Co0.05O2 nanofibers with an average diameter of 1 μm with the electrospinning method. The annealed nanofibers were thermally treated at a temperature of 1 100 ℃ and then shrunk to a diameter of about 650 nm. We used X-ray diffraction measurements and Raman spectra to confirm that the Cu Al0.95Co0.05O2 nanofibers had a single impurity free delafossite phase. The X-ray photoelectron spectroscopy analysis indicates that Co was present in the +2 oxidation state, resulting in an room temperature ferromagnetism in the Cu Al0.95Co0.05O2 fiber. This contrasts with nonmagnetism in pristine CuAlO2 fiber. The coercivity(Hc) value of 65.26 Oe and approximate saturation magnetization(Ms) of 0.012 emu/g demonstrate good evidence of ferromagnetism at room temperature for Cu Al0.95Co0.05O2 nanofibers.
关键词: