基于综合建模方法的铅锌烧结块成分预测

来源期刊:中南大学学报(自然科学版)2005年第1期

论文作者:王雅琳 桂卫华 阳春华 陈晓方 张传福

文章页码:113 - 118

关键词:铅锌烧结;成分预测;经验机理模型;监督式分布神经网络;智能集成模型

Key words:Pb Zn sintering; prediction of composition; expertise and mechanism based model;supervised distributed neural networks; intelligent integrated model

摘    要:针对铅锌烧结过程异常复杂的实际情况,提出了一种既可保证预测精度又满足配料计算对数据完备性要求的铅锌烧结块成分预测智能集成模型。该模型综合了机理与多种智能建模方法的优点,对于正常生产情况(即数据完备区),通过模糊分类/组合以及神经网络NN分段描述方法建立了成分预测的监督式分布神经网络模型;对于异常或不常用工况(即数据不完备区),通过专家经验规则修正部分假定或统计参数方式建立经验机理模型;采用串、并联形式将2种模型有机结合,并通过专家推理进行集成协调与更新修正,形成智能集成模型,实现成分可靠、准确的在线预测。在实际生产中运用该模型,烧结块铅、锌成分预测的相对误差分别为1.51%和0.41%。

Abstract: Considering the complexity in Pb Zn sintering process, an intelligent integrated modeling is presented to assure the composition prediction precision of Pb Zn agglomerate and to meet the requirements of the data completeness by blending computation, which synthesizes the advan tages of mechanism modeling and other intelligent methods. Firstly, under normal production conditions(or on the complete data section), a supervised distributed neural networks(SDNN) is established by fuzzy classification/combination and the description method of different neural networks(NN) on different subspace; then, under abnormal/unusual production conditions(or on the incomplete data section), an expertise and mechanism based(EM) model is built, in which some hypothetical or statistical parameters are modified by empirical rules; lastly, the EM model and the SDNN are integrated in series and parallel structure, and the integrated model is coordinated and updated by use of expert reasoning to realize the on-line prediction of composition. The intelligent integrated model is applied to industrial process, and the relative errors of prediction for lead and zinc are 1.51% and 0.41%, respectively.

基金信息:国家重点基础研究发展规划项目(973)

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号