简介概要

Controlling Corrosion Resistance of a Biodegradable Mg–Y–Zn Alloy with LPSO Phases via Multi-pass ECAP Process

来源期刊:Acta Metallurgica Sinica2020年第9期

论文作者:Li-Sha Wang Jing-Hua Jiang Bassiouny Saleh Qiu-Yuan Xie Qiong Xu Huan Liu Ai-Bin Ma

文章页码:1180 - 1190

摘    要:Mg-RE(rear earth) alloys with long period stacking(LPSO) structures have great potential in biomedical applications. The present work focused on the microstructure and corrosion behaviors of Mg 98.5 Y1 Zn0.5 alloys with 18 R LPSO structure after equal channel angular pressing(ECAP). The results showed that the ECAP process changed the grain size and the distribution of LPSO particles thus controlled the total corrosion rates of Mg 98.5 Y1 Zn0.5 alloys. During the ECAP process from 0 p to 12 p, the grain size reduced from 160–180 μm(as-cast) to 6–8 μm(12 p). The LPSO structures became kinked(4 p), then started to be broken into smaller pieces(8 p), and at last comminuted to fine particles and redistributed uniformly inside the matrix(12 p). The improvement in the corrosion resistance for ECAP samples was obtained from 0 p to 8 p, with the corrosion rate reduced from 3.24 mm/year(0 p) to 2.35 mm/year(8 p) in simulated body fluid, and the 12 p ECAP alloy exhibited the highest corrosion rate of 4.54 mm/year.

详情信息展示

Controlling Corrosion Resistance of a Biodegradable Mg–Y–Zn Alloy with LPSO Phases via Multi-pass ECAP Process

Li-Sha Wang1,2,Jing-Hua Jiang1,Bassiouny Saleh1,3,Qiu-Yuan Xie1,Qiong Xu1,Huan Liu1,Ai-Bin Ma1,2

1. College of Mechanics and Materials , Hohai University2. Suqian Institute , Hohai University3. Production Engineering Department , Alexandria University

摘 要:Mg-RE(rear earth) alloys with long period stacking(LPSO) structures have great potential in biomedical applications. The present work focused on the microstructure and corrosion behaviors of Mg 98.5 Y1 Zn0.5 alloys with 18 R LPSO structure after equal channel angular pressing(ECAP). The results showed that the ECAP process changed the grain size and the distribution of LPSO particles thus controlled the total corrosion rates of Mg 98.5 Y1 Zn0.5 alloys. During the ECAP process from 0 p to 12 p, the grain size reduced from 160–180 μm(as-cast) to 6–8 μm(12 p). The LPSO structures became kinked(4 p), then started to be broken into smaller pieces(8 p), and at last comminuted to fine particles and redistributed uniformly inside the matrix(12 p). The improvement in the corrosion resistance for ECAP samples was obtained from 0 p to 8 p, with the corrosion rate reduced from 3.24 mm/year(0 p) to 2.35 mm/year(8 p) in simulated body fluid, and the 12 p ECAP alloy exhibited the highest corrosion rate of 4.54 mm/year.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号