基于泛在位置数据的城市道路网精细建模

来源期刊:中南大学学报(自然科学版)2019年第9期

论文作者:黄金彩 邓敏 佘婷婷 刘慧敏 张建国 郑旭东

文章页码:2171 - 2184

关键词:道路网精细建模;泛在位置数据;道路语义信息;道路网几何拓扑结构

Key words:road network fine modeling; ubiquitous location data; road semantics; road geometry and topology

摘    要:为解决当前城市道路网自动提取方法难以同时对道路几何、拓扑、语义进行精细建模的问题,提出一种基于泛在位置数据的城市道路网一体化精细建模方法。首先,利用轨迹转向角热点分析方法提取道路交叉口区域,对交叉口和路段进行分治;然后,识别道路交叉口的出、入口点,分别采用低频轨迹聚类和交叉口连通性分析方法,识别交叉口的转向模式,并对路段轨迹进行分类,在此基础上对道路网几何、拓扑结构进行精细建模;最后,利用自然语言处理和地图匹配技术,利用位置文本数据和车辆轨迹数据提取道路名称和平均速度等信息,实现道路网几何、拓扑、语义精细建模。研究结果表明:本文方法能够用于快速获取城市道路网几何、拓扑、语义信息并精细建模。

Abstract: To solve the problem that the automatic extraction method of road network is difficult to be elaborated in geometry, topology and semantics at the same time, a road network fine modeling method based on ubiquitous position data was proposed. Firstly, the road intersection area was extracted by the trajectory steering angle hot spot analysis method, and the intersection and the road section were divided. Secondly, the entrance and exit points of the road intersection were identified. The low-frequency trajectory clustering and intersection were respectively adopted to identify the steering mode of the intersection and classify the road segment trajectories, and further model the road network geometry and topology. Finally, the natural language processing and map matching techniques were used to obtain the position text data and the vehicle, trajectory data information such as road name and average speed was extrated to realize road network geometry, topology and semantic fine modeling. The results show that the proposed method can be used to effectively acquire and model the road network data with complete geometric topology and rich semantics.

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号