简介概要

基于SVM与D-S证据理论的异步电动机转子断条故障诊断方法

来源期刊:工矿自动化2010年第6期

论文作者:焦露琴 姚奇 杨丽

文章页码:43 - 48

关键词:异步电动机;转子断条;故障诊断;支持变量机;D-S证据;信息融合;SVM;

摘    要:目前异步电动机转子断条故障诊断方法都是基于从定子电流中提取出特征频率来对转子状态作出诊断的方法,当异步电动机空载或轻载时,该特征频率易受基频泄露的影响而很难得到,同时该特征频率受转速波动影响很大,单纯根据该特征频率对转子状态作出判断缺乏准确性。针对上述问题,提出了一种运用SVM与D-S证据理论对异步电动机转子断条故障进行识别的诊断方法。该方法基于扩展Park法与FFT变换法,分别从定子电流信号和振动信号中提取转子断条故障的特征信息,利用SVM对异步电动机的状态进行模式识别,并将识别结果形成彼此独立的证据,而后根据D-S证据融合规则进行融合处理,从而实现对异步电动机转子断条故障的准确识别。实验结果表明,该方法可以对异步电动机转子断条故障作出准确判断。

详情信息展示

基于SVM与D-S证据理论的异步电动机转子断条故障诊断方法

焦露琴1,姚奇2,杨丽3

1. 晋城市煤炭设计室2. 中国天辰工程有限公司3. 上海电气工程设计有限公司

摘 要:目前异步电动机转子断条故障诊断方法都是基于从定子电流中提取出特征频率来对转子状态作出诊断的方法,当异步电动机空载或轻载时,该特征频率易受基频泄露的影响而很难得到,同时该特征频率受转速波动影响很大,单纯根据该特征频率对转子状态作出判断缺乏准确性。针对上述问题,提出了一种运用SVM与D-S证据理论对异步电动机转子断条故障进行识别的诊断方法。该方法基于扩展Park法与FFT变换法,分别从定子电流信号和振动信号中提取转子断条故障的特征信息,利用SVM对异步电动机的状态进行模式识别,并将识别结果形成彼此独立的证据,而后根据D-S证据融合规则进行融合处理,从而实现对异步电动机转子断条故障的准确识别。实验结果表明,该方法可以对异步电动机转子断条故障作出准确判断。

关键词:异步电动机;转子断条;故障诊断;支持变量机;D-S证据;信息融合;SVM;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号