一种基于相对密度和决策图的聚类算法
来源期刊:控制与决策2018年第11期
论文作者:周世波 徐维祥
文章页码:1921 - 1930
关键词:聚类;相对密度;决策图;密度峰值;k-近邻;数据挖掘;
摘 要:聚类是数据挖掘领域的一个重要研究方向,针对复杂数据集中存在的簇间密度不均匀、聚类形态多样、聚类中心的识别等问题,引入样本点k近邻信息计算样本点的相对密度,借鉴快速搜索和发现密度峰值聚类(CFSFDP)算法的簇中心点识别方法,提出一种基于相对密度和决策图的聚类算法,实现对任意分布形态数据集聚类中心快速、准确地识别和有效聚类.在7类典型测试数据集上的实验结果表明,所提出的聚类算法具有较好的适用性,与经典的DBSCAN算法和CFSFDP等算法相比,在没有显著提高时间复杂度的基础上,聚类效果更好,对不同类型数据集的适应性也更广.
周世波1,2,徐维祥1
1. 北京交通大学交通运输学院2. 集美大学航海学院
摘 要:聚类是数据挖掘领域的一个重要研究方向,针对复杂数据集中存在的簇间密度不均匀、聚类形态多样、聚类中心的识别等问题,引入样本点k近邻信息计算样本点的相对密度,借鉴快速搜索和发现密度峰值聚类(CFSFDP)算法的簇中心点识别方法,提出一种基于相对密度和决策图的聚类算法,实现对任意分布形态数据集聚类中心快速、准确地识别和有效聚类.在7类典型测试数据集上的实验结果表明,所提出的聚类算法具有较好的适用性,与经典的DBSCAN算法和CFSFDP等算法相比,在没有显著提高时间复杂度的基础上,聚类效果更好,对不同类型数据集的适应性也更广.
关键词:聚类;相对密度;决策图;密度峰值;k-近邻;数据挖掘;