简介概要

When thermoelectric materials come across with magnetism

来源期刊:Rare Metals2021年第4期

论文作者:Chen-Chen Zhao Chong Xiao

文章页码:752 - 766

摘    要:Nowadays,thermoelectric materials have attracted a lot of attention as they can directly convert heat into electricity and vice versa.However,while strenuous efforts have been made,those conventional strategies are still inevitably going to meet their performance optimization limits.For this reason,brand new strategies are badly needed to achieve further enhancement.Here,the roles played by magnetism in recent advances of thermoelectric optimization are concluded.Firstly,magnetic thermoelectric materials can just be treated like other normal materials because the use of universal optimization strategies can still get good results.So,it is not a situation which is all or nothing and the tactics of using magnetism for thermoelectric optimization can coexist with other strategies.Besides,through magnetic doping,we can introduce and adjust magnetism in materials for further optimization.Magnetism provides more possibilities in thermoelectric optimization as it can directly influence the spin states in materials.Furthermore,in the form of magnetic secondphase nanoclusters,magnetism can be introduced to thermoelectric materials to conquer the dilemma that the solid solubility of many magnetic ions in thermoelectric materials is too low to have any significant effect on thermoelectric properties.Finally,when exposed to an external magnetic field,topological materials can rely on its unique band structures to optimize.

详情信息展示

When thermoelectric materials come across with magnetism

Chen-Chen Zhao1,2,Chong Xiao1,2

1. Hefei National Laboratory for Physical Sciences at the Microscale,University of Science and Technology of China

摘 要:Nowadays,thermoelectric materials have attracted a lot of attention as they can directly convert heat into electricity and vice versa.However,while strenuous efforts have been made,those conventional strategies are still inevitably going to meet their performance optimization limits.For this reason,brand new strategies are badly needed to achieve further enhancement.Here,the roles played by magnetism in recent advances of thermoelectric optimization are concluded.Firstly,magnetic thermoelectric materials can just be treated like other normal materials because the use of universal optimization strategies can still get good results.So,it is not a situation which is all or nothing and the tactics of using magnetism for thermoelectric optimization can coexist with other strategies.Besides,through magnetic doping,we can introduce and adjust magnetism in materials for further optimization.Magnetism provides more possibilities in thermoelectric optimization as it can directly influence the spin states in materials.Furthermore,in the form of magnetic secondphase nanoclusters,magnetism can be introduced to thermoelectric materials to conquer the dilemma that the solid solubility of many magnetic ions in thermoelectric materials is too low to have any significant effect on thermoelectric properties.Finally,when exposed to an external magnetic field,topological materials can rely on its unique band structures to optimize.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号