Effects of mask wall angle on matrix-hole shape changes during electrochemical machining by mask

来源期刊:中南大学学报(英文版)2011年第4期

论文作者:李冬林 朱荻 李寒松 刘金国

文章页码:1115 - 1120

Key words:electrochemical machining; matrix-hole; machining accuracy; current density distribution

Abstract:

The influences of the mask wall angle on the current density distribution, shape of the evolving cavity and machining accuracy were investigated in electrochemical machining (ECM) by mask. A mathematical model was developed to predict the shape evolution during the ECM by mask. The current density distribution is sensitive to mask wall angle. The evolution of cavity is determined by the current density distribution of evolving workpiece surface. The maximum depth is away from the center of holes machined, which leads to the island appearing at the center of cavity for mask wall angles greater than or equal to 90° (β≥90°). The experimental system was established and the simulation results were experimentally verified. The results indicate that the simulation results of cavity shape are consistent with the actual ones. The experiments also show that the repetition accuracy of matrix-hole for β≥90° is higher than that for β<90°. A hole taper is diminished, and the machining accuracy is improved with the mask wall angle increasing.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号