一类非线性系统的递归神经网络控制
来源期刊:中南大学学报(自然科学版)1999年第5期
论文作者:刘妹琴 陈际达
文章页码:541 - 544
关键词:递归神经网络;遗传算法;非线性动力学系统;倒立摆
Key words:recurrent neural network; genetic algorithm; nonlinear dynamical system; inverted pendulum
摘 要:递归神经网络(RNN)由于具有极为 丰富的动力学行为而被用在非线性控制系统中,但是传统的RNN的训练算法不仅复杂,而且容易陷入局部极值点.作者通过对标准的遗传算法的改进,采用格雷编 码方式、比赛选择策略和稳定状态更替方式,使其适用于RNN控制器结构和参数的确定.此外,把RNN控制器用于控制一类SIMO自不稳定非线性系统(如倒立摆系统),也收到很好的效果.
Abstract: Recurrent Neural Networks (RNNs) can be used in the nonlinear control systems because of their rich dynamical behavior. However, conventional training algorithms are not only complicated, but also apt to get trapped in the local minima. In this paper, the standard genetic algorithms are improved. Gray scale encoding, tournament selection and steady state progression are adopted to determine the structures and parameters of RNNs. Satisfactory results are also gained by the experiments where one class of absolutely unstable nonlinear SIMO systems ( e.g . inverted pendulum) are controlled by RNN controllers.