简介概要

湿式球磨机筒体振动信号分析及负荷软测量

来源期刊:东北大学学报(自然科学版)2010年第11期

论文作者:汤健 赵立杰 岳恒 柴天佑

文章页码:1521 - 1524

关键词:磨机负荷(ML);功率谱密度(PSD);主元分析(PCA);最小二乘支持向量机(LSSVM);

摘    要:针对磨矿过程的磨机负荷(ML)难以有效检测,球磨机常运行在欠负荷状态,造成该过程难以实现优化控制和节能降耗的难题,通过综合分析球磨机筒体振动的产生机理、不同研磨条件下振动信号的功率谱密度(PSD)及ML参数与PSD各频段的相关性,提出了采用料球比、浓度及充填率三个负荷参数对ML进行软测量建模的方法.该方法首先将振动加速度的时域信号通过傅立叶变换至频域,然后采用主元分析法(PCA)对振动频谱数据的低、中、高三个频段分别进行降维和特征谱变量的提取,最后利用最小二乘支持向量机(LSSVM)实现特征谱变量与ML参数间的非线性映射.实验结果表明,该算法能够有效地提取频谱变量的谱特征,并具有较高的估计精度.

详情信息展示

湿式球磨机筒体振动信号分析及负荷软测量

汤健,赵立杰,岳恒,柴天佑

东北大学流程工业综合自动化教育部重点实验室

摘 要:针对磨矿过程的磨机负荷(ML)难以有效检测,球磨机常运行在欠负荷状态,造成该过程难以实现优化控制和节能降耗的难题,通过综合分析球磨机筒体振动的产生机理、不同研磨条件下振动信号的功率谱密度(PSD)及ML参数与PSD各频段的相关性,提出了采用料球比、浓度及充填率三个负荷参数对ML进行软测量建模的方法.该方法首先将振动加速度的时域信号通过傅立叶变换至频域,然后采用主元分析法(PCA)对振动频谱数据的低、中、高三个频段分别进行降维和特征谱变量的提取,最后利用最小二乘支持向量机(LSSVM)实现特征谱变量与ML参数间的非线性映射.实验结果表明,该算法能够有效地提取频谱变量的谱特征,并具有较高的估计精度.

关键词:磨机负荷(ML);功率谱密度(PSD);主元分析(PCA);最小二乘支持向量机(LSSVM);

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号