基于云-神经网络的多属性模糊规则分类
来源期刊:控制与决策2009年第6期
论文作者:韩敏 李政
文章页码:933 - 936
关键词:云模型;神经网络;多属性规则;
摘 要:针对模糊规则分类中数据边界硬性划分的局限性问题,建立了云-神经网络模型,并提出了基于云-神经网络的模糊规则分类算法.在不影响数据模糊性和随机性的基础上,将数据转化为规则,并利用神经网络的学习能力,进行多属性模糊规则分类.与传统方法相比,该方法在保证数据模糊性和随机性的基础上,提高了模型精度和分类准确率.应用实例表明了该方法的有效性和可行性.
韩敏,李政
摘 要:针对模糊规则分类中数据边界硬性划分的局限性问题,建立了云-神经网络模型,并提出了基于云-神经网络的模糊规则分类算法.在不影响数据模糊性和随机性的基础上,将数据转化为规则,并利用神经网络的学习能力,进行多属性模糊规则分类.与传统方法相比,该方法在保证数据模糊性和随机性的基础上,提高了模型精度和分类准确率.应用实例表明了该方法的有效性和可行性.
关键词:云模型;神经网络;多属性规则;