简介概要

碳化硼粒度对无压浸渗高体分铝基复合材料微观组织和力学性能的影响

来源期刊:材料导报2019年第20期

论文作者:曹雷刚 王晓荷 崔岩 杨越 刘园

文章页码:3472 - 3476

关键词:碳化硼;复合材料;无压浸渗;力学性能;硬度;

摘    要:选用平均粒度为2μm和38μm的碳化硼颗粒,分别制备100%(质量分数) 38μm、20%(质量分数) 2. 0μm+80%(质量分数) 38μm和100%(质量分数) 2. 0μm的碳化硼预制体,以无压浸渗法制备三种高体分B4C/Al复合材料,研究碳化硼颗粒对复合材料的物相组成、微观组织和力学性能的影响。结果表明,三种复合材料均由Al、B4C、Al3BC、AlB2和富Fe-Mn相组成。当增强相完全为大颗粒碳化硼时,复合材料内部碳化硼均匀分布于铝基体,此时界面反应程度较弱,界面产物AlB2和Al3BC呈随机分布的特征,且复合材料的硬度和抗弯强度分别为23. 2HRC和406 MPa。由于小颗粒碳化硼具有较高的比表面积,其与熔融状态的铝合金(以下简称"熔铝")实际接触面积较大,使得两者之间发生剧烈的界面反应。因此,当增强相中引入20%(质量分数)小颗粒碳化硼时,复合材料内铝基体消耗量增加,大颗粒碳化硼仍近乎均匀分布,颗粒间组织表现为剩余的细颗粒B4C和铝均匀分布于界面产物内。由于初始增强相体积分数和陶瓷相界面产物含量均增加,复合材料的硬度提升至40. 02HRC,抗弯强度略有提升(425 MPa),但应变量有所降低。当增强相完全为小颗粒碳化硼时,剧烈的界面反应大量消耗铝合金基体,使得Al3BC和AlB2成为B4C/Al复合材料的主要物相,微观组织呈现为剩余的小颗粒B4C和铝均匀分布于陶瓷相基体内,复合材料硬度提升至56. 8HRC。然而,由于小颗粒碳化硼在高温烧结过程中存在封闭微孔缺陷且这些缺陷将保留于复合材料内,使得复合材料的弯曲强度降低至248 MPa。

详情信息展示

碳化硼粒度对无压浸渗高体分铝基复合材料微观组织和力学性能的影响

曹雷刚,王晓荷,崔岩,杨越,刘园

北方工业大学机械与材料工程学院

摘 要:选用平均粒度为2μm和38μm的碳化硼颗粒,分别制备100%(质量分数) 38μm、20%(质量分数) 2. 0μm+80%(质量分数) 38μm和100%(质量分数) 2. 0μm的碳化硼预制体,以无压浸渗法制备三种高体分B4C/Al复合材料,研究碳化硼颗粒对复合材料的物相组成、微观组织和力学性能的影响。结果表明,三种复合材料均由Al、B4C、Al3BC、AlB2和富Fe-Mn相组成。当增强相完全为大颗粒碳化硼时,复合材料内部碳化硼均匀分布于铝基体,此时界面反应程度较弱,界面产物AlB2和Al3BC呈随机分布的特征,且复合材料的硬度和抗弯强度分别为23. 2HRC和406 MPa。由于小颗粒碳化硼具有较高的比表面积,其与熔融状态的铝合金(以下简称"熔铝")实际接触面积较大,使得两者之间发生剧烈的界面反应。因此,当增强相中引入20%(质量分数)小颗粒碳化硼时,复合材料内铝基体消耗量增加,大颗粒碳化硼仍近乎均匀分布,颗粒间组织表现为剩余的细颗粒B4C和铝均匀分布于界面产物内。由于初始增强相体积分数和陶瓷相界面产物含量均增加,复合材料的硬度提升至40. 02HRC,抗弯强度略有提升(425 MPa),但应变量有所降低。当增强相完全为小颗粒碳化硼时,剧烈的界面反应大量消耗铝合金基体,使得Al3BC和AlB2成为B4C/Al复合材料的主要物相,微观组织呈现为剩余的小颗粒B4C和铝均匀分布于陶瓷相基体内,复合材料硬度提升至56. 8HRC。然而,由于小颗粒碳化硼在高温烧结过程中存在封闭微孔缺陷且这些缺陷将保留于复合材料内,使得复合材料的弯曲强度降低至248 MPa。

关键词:碳化硼;复合材料;无压浸渗;力学性能;硬度;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号