基于RBF神经网络的合金铸铁动态腐蚀性能预测
来源期刊:腐蚀与防护2014年第6期
论文作者:王玉荣 乌日根
文章页码:612 - 1240
关键词:RBF网络;稀土;腐蚀速率;耐碱蚀;预测;
摘 要:通过动态质量损失腐蚀试验获取样本数据,利用Matlab的工具箱函数建立了合金铸铁碱腐蚀速率的RBF神经网络预测模型,并对网络模型的预测精度进行了研究。结果表明,在样本集和训练条件下,RBF神经网络模型较好地反映出腐蚀时间、合金铸铁主要合金成分与腐蚀速率之间的非线性关系,可用于合金铸铁在高温浓碱液中的动态腐蚀性能的预测;当RBF网络的扩展系数为0.47时,动态腐蚀速率的试验值与网络预测值之间的误差最小,且耐蚀性评价准确率达到100%。
王玉荣,乌日根
包头职业技术学院人文与艺术设计系
摘 要:通过动态质量损失腐蚀试验获取样本数据,利用Matlab的工具箱函数建立了合金铸铁碱腐蚀速率的RBF神经网络预测模型,并对网络模型的预测精度进行了研究。结果表明,在样本集和训练条件下,RBF神经网络模型较好地反映出腐蚀时间、合金铸铁主要合金成分与腐蚀速率之间的非线性关系,可用于合金铸铁在高温浓碱液中的动态腐蚀性能的预测;当RBF网络的扩展系数为0.47时,动态腐蚀速率的试验值与网络预测值之间的误差最小,且耐蚀性评价准确率达到100%。
关键词:RBF网络;稀土;腐蚀速率;耐碱蚀;预测;