简介概要

Effect of manganese addition on the microstructure and electromagnetic properties of YIG

来源期刊:Journal of Rare Earths2011年第6期

论文作者:王加仟 杨建 金宇龙 丘泰

文章页码:562 - 566

摘    要:Y3MnxFe4.85-xO12 (x=0, 0.02, 0.04, 0.06, 0.08 and 0.1) garnet ferrites (YMnIG) were prepared by conventional solid-state reaction method in air atmosphere. The effect of Mn addition on the microstructure and electromagnetic properties of YIG were investigated by means of techniques such as X-ray diffraction, scanning electron microscopey, network analyzer, hysteresigraph, magnetic balance and electron paramagnetic resonance spectrometry. Pure garnet phase of Y3Fe5O12 was identified for all the samples, except for minor YFeO3 phase appearing in the sample with x=0.06. The addition of Mn showed little influence on the dielectric constant of YIG, which varied between 14.2 and 14.5. Substituting Mnn+ for Fen+ in YIG decreased the total amount of Fe ions, inhibited the reduction of Fe3+ and promoted the grain growth of garnet phase, which led to the decrease in dielectric loss and coercivity. Because the amount of Mn3+ ions in octahedral sites in- creased with Mn concentration, the saturation magnetization showed a slight decrease firstly and then increased notably. The addition of Mn could also increase the remanence ratio of YIG ferrites by decreasing the magnetostriction constant λ111. Therefore, doping Mn into YIG fer- rites with proper quantity could improve electromagnetic properties of YIG significantly. The YMnIG ferrite with x=0.08, i.e., Y3Mn0.08 Fe4.77O12, showed the optimum electromagnetic properties: εr=14.2, tanδe=1.5×10-4, Hc=36 A/m, 4πMS=192 mT, Br/Bs=0.84, ?H=6.8 KA/m.

详情信息展示

Effect of manganese addition on the microstructure and electromagnetic properties of YIG

王加仟1,杨建1,金宇龙2,丘泰1

1. College of Materials Science and Engineering, Nanjing University of Technology2. Nanjing Institute of Electronic Technology

摘 要:Y3MnxFe4.85-xO12 (x=0, 0.02, 0.04, 0.06, 0.08 and 0.1) garnet ferrites (YMnIG) were prepared by conventional solid-state reaction method in air atmosphere. The effect of Mn addition on the microstructure and electromagnetic properties of YIG were investigated by means of techniques such as X-ray diffraction, scanning electron microscopey, network analyzer, hysteresigraph, magnetic balance and electron paramagnetic resonance spectrometry. Pure garnet phase of Y3Fe5O12 was identified for all the samples, except for minor YFeO3 phase appearing in the sample with x=0.06. The addition of Mn showed little influence on the dielectric constant of YIG, which varied between 14.2 and 14.5. Substituting Mnn+ for Fen+ in YIG decreased the total amount of Fe ions, inhibited the reduction of Fe3+ and promoted the grain growth of garnet phase, which led to the decrease in dielectric loss and coercivity. Because the amount of Mn3+ ions in octahedral sites in- creased with Mn concentration, the saturation magnetization showed a slight decrease firstly and then increased notably. The addition of Mn could also increase the remanence ratio of YIG ferrites by decreasing the magnetostriction constant λ111. Therefore, doping Mn into YIG fer- rites with proper quantity could improve electromagnetic properties of YIG significantly. The YMnIG ferrite with x=0.08, i.e., Y3Mn0.08 Fe4.77O12, showed the optimum electromagnetic properties: εr=14.2, tanδe=1.5×10-4, Hc=36 A/m, 4πMS=192 mT, Br/Bs=0.84, ?H=6.8 KA/m.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号