Novel algorithm for geomagnetic navigation

来源期刊:中南大学学报(英文版)2011年第3期

论文作者:李明明 卢鸿谦 尹航 黄显林

文章页码:791 - 799

Key words:autonomous navigation; geomagnetic navigation; unscented particle filter; Kalman filter; kinematics state estimation

Abstract: To solve the highly nonlinear and non-Gaussian recursive state estimation problem in geomagnetic navigation, the unscented particle filter (UPF) was introduced to navigation system. The simulation indicates that geomagnetic navigation using UPF could complete the position estimation with large initial horizontal position errors. However, this navigation system could only provide the position information. To provide all the kinematics states estimation of aircraft, a novel autonomous navigation algorithm, named unscented particle and Kalman hybrid navigation algorithm (UPKHNA), was proposed for geomagnetic navigation. The UPKHNA used the output of UPF and barometric altimeter as position measurement, and employed the Kalman filter to estimate the kinematics states of aircraft. The simulation shows that geomagnetic navigation using UPKHNA could provide all the kinematics states estimation of aircraft continuously, and the horizontal positioning performance is better than that only using the UPF.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号