简介概要

基于稀疏化鲁棒LS-SVR与多目标优化的铁水硅含量软测量建模

来源期刊:工程科学学报2016年第9期

论文作者:郭东伟 周平

文章页码:1233 - 1241

关键词:炼铁;硅含量;建模;最小二乘法;支持向量机;多目标优化;

摘    要:针对高炉炼铁过程的关键工艺指标——铁水硅含量[Si]难以直接在线检测且化验过程滞后的问题,提出一种基于稀疏化鲁棒最小二乘支持向量机(R-S-LS-SVR)与多目标遗传参数优化的铁水[Si]动态软测量建模方法.首先,针对标准最小二乘支持向量机(LS-SVR)的拉格朗日乘子与误差项成正比导致最终解缺少稀疏性的问题,提取样本数据在特征空间映射集的极大无关组来实现训练样本集的稀疏化,降低建模的计算复杂度;其次,标准最小二乘支持向量机的目标函数鲁棒性不足的问题将IGGIII加权函数引入稀疏化后的最小二乘支持向量机模型进行鲁棒性改进,得到鲁棒性较强的稀疏化鲁棒最小二乘支持向量机模型;最后,针对常规均方根误差评价模型性能的不足,提出从建模误差与估计趋势评价建模性能的多目标评价指标.在此基础上,利用非支配排序的带有精英策略的多目标遗传算法优化模型参数,从而获得具有最优参数的铁水[Si]在线软测量模型.工业实验及比较分析验证了所提方法的有效性和先进性.

详情信息展示

基于稀疏化鲁棒LS-SVR与多目标优化的铁水硅含量软测量建模

郭东伟1,2,周平1,2

1. 东北大学流程工业综合自动化国家重点实验室2. 矿冶过程自动控制技术国家重点实验室

摘 要:针对高炉炼铁过程的关键工艺指标——铁水硅含量[Si]难以直接在线检测且化验过程滞后的问题,提出一种基于稀疏化鲁棒最小二乘支持向量机(R-S-LS-SVR)与多目标遗传参数优化的铁水[Si]动态软测量建模方法.首先,针对标准最小二乘支持向量机(LS-SVR)的拉格朗日乘子与误差项成正比导致最终解缺少稀疏性的问题,提取样本数据在特征空间映射集的极大无关组来实现训练样本集的稀疏化,降低建模的计算复杂度;其次,标准最小二乘支持向量机的目标函数鲁棒性不足的问题将IGGIII加权函数引入稀疏化后的最小二乘支持向量机模型进行鲁棒性改进,得到鲁棒性较强的稀疏化鲁棒最小二乘支持向量机模型;最后,针对常规均方根误差评价模型性能的不足,提出从建模误差与估计趋势评价建模性能的多目标评价指标.在此基础上,利用非支配排序的带有精英策略的多目标遗传算法优化模型参数,从而获得具有最优参数的铁水[Si]在线软测量模型.工业实验及比较分析验证了所提方法的有效性和先进性.

关键词:炼铁;硅含量;建模;最小二乘法;支持向量机;多目标优化;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号