简介概要

粉末压制功与不完全Γ函数的关系

来源期刊:中南大学学报(自然科学版)1983年第2期

论文作者:黄培云

文章页码:1 - 7

关键词:粉末压制; 函数值; 压制压力; 粉末体; 应变; 总功; 电子计算机; 致密金属; 压制方程; 压制过程

摘    要:本文导出了粉体从应变为0(ε=0)到应变无穷大(ε=∞)时的压制总功: α=MW(1/do-1/dm)Γ(m+1) 式中,M是粉末压制模量,W是粉末的重量,do是粉末的原始密度,dm是致密金属的理论密度,Γ(m+1)是m+1的Γ函数, Γ(m+1)=∫0 ∞eεmdε ε是压制应变, ε=ln(dm-do)d/(dm-d)do d是压坯密度,m是非线性指数。 还导出了应变从ε1到ε2时实际的粉末压制功, α=∫ε1ε2eεmdε 式中,∫ε1ε2eεmdε是m+1的不完全Γ函数,其函数值可由电子计算机近似求得。 文中列表给出了钨粉压制功的计算实例。

Abstract: The total work of compaction of powders, from zero strain(ε= 0) to in-finite strain (ε= ∞), is derived in this paper to be: atotal= Mw (1/d0-1/dm) Γ(m + 1) where M is the modulus of compaction of powder, w is the weight of powder,d0 is the initial density of powder, dm is the theoretical density of densemetal, m is the index of non-linearity and Γ(m + 1) is the gamma functionof (m + 1). Γ(m + 1) = ∫0 e-8εmdε where ε is the strain of compaction, ε=ln((dm-d0)d)/((dm-d)d0) and d is the green density of powder compact. The actual work of compaction of powders from ε1 to ε2 is derived to be: a = Mw (1/d0-1/dm)∫ε1ε2 eεmdε where ∫ε1ε2eεmdεis the incomplete gamma function of (m + 1), the numer-ical value of which can be evaluated by computers. Examples of calculations for the work of compaction on tungsten powderare given and tabulated.

详情信息展示

 

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号