简介概要

Characterization and analysis of DLC films with different thickness deposited by RF magnetron PECVD

来源期刊:Rare Metals2012年第2期

论文作者:HUANG Yujie a, b , WANG Qi a, b , WANG Mei a, b , FEI Zhenyi a , and LI Musen a, b a Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan China b Shandong Engineering Research Centre for Super-Hard Materials, Zoucheng , China

文章页码:198 - 203

摘    要:Diamond-like carbon (DLC) films have excellent mechanical and chemical properties similar to those of crystalline diamond giving them wide applications as protective coatings. So far, a variety of methods are employed to deposit DLC films. In this study, DLC films with different thicknesses were deposited on Si and glass substrates using RF magnetron PECVD method with C 4 H 10 as carbon source. The bonding microstructure, surface morphology and tribological properties at different growing stages of the DLC films were tested. Raman spectra were deconvoluted into D peak at about 1370 cm 1 and G peak around 1590 cm 1 , indicating typical features of the DLC films. A linear relationship between the film thickness and the deposition time was found, revealing that the required film thickness may be obtained by the appropriate tune of the deposition time. The concentration of sp 3 and sp 2 carbon atoms in the DLC films was measured by XPS spectra. As the films grew, the sp 3 carbon atoms decreased while sp 2 atoms increased. Surface morphology of the DLC films clearly showed that the films were composed of spherical carbon clusters, which tended to congregate as the deposition time increased. The friction coefficient of the films was very low and an increase was also found with the increase of film thickness corresponding to the results of XPS spectra. The scratch test proved that there was good bonding between the DLC films and the substrates.

详情信息展示

Characterization and analysis of DLC films with different thickness deposited by RF magnetron PECVD

HUANG Yujie a, b , WANG Qi a, b , WANG Mei a, b , FEI Zhenyi a , and LI Musen a, b a Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061 China b Shandong Engineering Research Centre for Super-Hard Materials, Zoucheng 273500, China

摘 要:Diamond-like carbon (DLC) films have excellent mechanical and chemical properties similar to those of crystalline diamond giving them wide applications as protective coatings. So far, a variety of methods are employed to deposit DLC films. In this study, DLC films with different thicknesses were deposited on Si and glass substrates using RF magnetron PECVD method with C 4 H 10 as carbon source. The bonding microstructure, surface morphology and tribological properties at different growing stages of the DLC films were tested. Raman spectra were deconvoluted into D peak at about 1370 cm 1 and G peak around 1590 cm 1 , indicating typical features of the DLC films. A linear relationship between the film thickness and the deposition time was found, revealing that the required film thickness may be obtained by the appropriate tune of the deposition time. The concentration of sp 3 and sp 2 carbon atoms in the DLC films was measured by XPS spectra. As the films grew, the sp 3 carbon atoms decreased while sp 2 atoms increased. Surface morphology of the DLC films clearly showed that the films were composed of spherical carbon clusters, which tended to congregate as the deposition time increased. The friction coefficient of the films was very low and an increase was also found with the increase of film thickness corresponding to the results of XPS spectra. The scratch test proved that there was good bonding between the DLC films and the substrates.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号