简介概要

基于多种群粒子群算法和布谷鸟搜索的联合寻优算法

来源期刊:控制与决策2016年第4期

论文作者:高云龙 闫鹏

文章页码:601 - 608

关键词:粒子群算法;动态多种群;布谷鸟搜索;中位数聚类;

摘    要:为了提高动态多种群粒子群(DMS-PSO)算法的全局搜索能力,将布谷鸟搜索算法(CS)引入DMS-PSO算法中,提出DMS-PSO-CS算法.采用中位数聚类算法将整个种群动态划分为若干小种群,各个小种群作为底层种群通过PSO算法进行寻优,再将每个小种群中的最优粒子作为高层种群的粒子通过CS算法进行深度优化.将所提出算法应用于CEC 2014测试函数,并与CS算法和其他改进的PSO算法进行比较.实验结果表明,所提出算法能够显著提高全局搜索能力和算法效率.

详情信息展示

基于多种群粒子群算法和布谷鸟搜索的联合寻优算法

高云龙,闫鹏

厦门大学信息技术与科学学院

摘 要:为了提高动态多种群粒子群(DMS-PSO)算法的全局搜索能力,将布谷鸟搜索算法(CS)引入DMS-PSO算法中,提出DMS-PSO-CS算法.采用中位数聚类算法将整个种群动态划分为若干小种群,各个小种群作为底层种群通过PSO算法进行寻优,再将每个小种群中的最优粒子作为高层种群的粒子通过CS算法进行深度优化.将所提出算法应用于CEC 2014测试函数,并与CS算法和其他改进的PSO算法进行比较.实验结果表明,所提出算法能够显著提高全局搜索能力和算法效率.

关键词:粒子群算法;动态多种群;布谷鸟搜索;中位数聚类;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号