基于自适应差分进化的常压塔轻质油产量多目标优化
来源期刊:控制与决策2020年第3期
论文作者:丁进良 陈佳鑫 马欣然
文章页码:604 - 612
关键词:常压塔;轻质油产量;自适应差分进化;惩罚边界交叉;择优学习;多目标优化;
摘 要:常压塔轻质油产量最大化是提高企业效益的重要途径之一.为了适应市场需求和价格变化,生产高需求与高价值的轻质油产品,提出一种基于自适应差分进化的常压塔轻质油产量多目标优化算法.该算法采用惩罚边界交叉法的分解方法,在种群变异阶段引入择优学习算子来改进传统变异算子随机选取个体或者单纯选取最好个体的随机性和盲目性,利用自适应策略逐渐改变交叉变异算子.将改进算法应用于3种测试函数和实际炼油厂常压塔轻质油产量优化,结果表明所提出的算法在测试函数上具有明显优势,并能有效提高常压塔轻质油产量,验证了所提算法的有效性.
丁进良,陈佳鑫,马欣然
东北大学流程工业综合自动化国家重点实验室
摘 要:常压塔轻质油产量最大化是提高企业效益的重要途径之一.为了适应市场需求和价格变化,生产高需求与高价值的轻质油产品,提出一种基于自适应差分进化的常压塔轻质油产量多目标优化算法.该算法采用惩罚边界交叉法的分解方法,在种群变异阶段引入择优学习算子来改进传统变异算子随机选取个体或者单纯选取最好个体的随机性和盲目性,利用自适应策略逐渐改变交叉变异算子.将改进算法应用于3种测试函数和实际炼油厂常压塔轻质油产量优化,结果表明所提出的算法在测试函数上具有明显优势,并能有效提高常压塔轻质油产量,验证了所提算法的有效性.
关键词:常压塔;轻质油产量;自适应差分进化;惩罚边界交叉;择优学习;多目标优化;