基于SVM的“弹性系数-投入产出”电力需求预测分析模型

来源期刊:中南大学学报(自然科学版)2012年第6期

论文作者:董力通 谭显东 刘伟国 刘海波

文章页码:2441 - 2444

关键词:电力需求;弹性系数;投入产出;支持向量机

Key words:electricity demand; elastic coefficient; input-output; support vector machine(SVM)

摘    要:基于合理预测电力需求,是保证电网规划与产业发展合理性的重要依据,在我国优化产业结构、推进节能减排的环境下,电力中长期需求的变化面临更多不确定因素,考虑多个因素对电力经济发展弹性系数的影响,按照投入产出模型,运用支持向量机算法构建预测模型。以2000—2009年我国电力需求及GDP,产业结构的数据为样本,预测2010年的电力需求总量。通过与普通弹性系数回归预测、普通支持向量机预测方法对比,电力需求总量预测精度分别提高8.90%和3.98 %。

Abstract: Based on the fact that the demand of electricity must be reasonably forecast, which is an important basis to ensure the power grid planning and industrial development, in order to optimize industrial structure and promote energy conservation and emission reduction, there are many uncertain factors to change the medium and long-term electricity demand, considering the effects of multiple factors on the elastic coefficient of the electric power economic development, according to the input-output model, a forecasting model was constructed using the algorithm of support vector machine(SVM). Using electricity demand and GDP, taking the industrial structure of data in 2000—2009 as samples, the total electricity demand in 2010 was forecast. The results show that compared with elastic coefficient regression forecasting and ordinary common SVM forecasting method, the forecasting accuracy of the total electricity demand increases by 8.90% and 3.98%, respectively.

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号