Tests and Simulation Analysis on Fracture Performance of Concrete
来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2013年第3期
论文作者:胡少伟 LU Jun
文章页码:527 - 534
摘 要:To obtain the fracture parameters of concrete, fracture tests were conducted with three-point bending beam method aiming at 30 concrete beams with different sizes and different intensity. The concrete specimen with prefabricated crack to determine the fracture parameters of concrete were conducted and the fracture performance of the specimen was analyzed. The test results show that, initial fracture toughness is unrelated to the size of specimens; while unstable fracture toughness is related to the size of specimens. As for specimens of bastard size, when concrete intensity is relatively low, unstable fracture toughness increases along with the increase of intensity; when concrete intensity is relatively high, unstable fracture toughness will decrease; when concrete intensity increases continuously, unstable fracture toughness will further increase somewhat. As for specimens of standard size, unstable fracture toughness will increase along with the increase of intensity. Aiming at concrete beam specimens, we conducted two-dimensional non-linear finite element analysis, obtained the stress intensity factor, and carried out contrastive analysis with the experimental results.
胡少伟,LU Jun
Nanjing Hydraulic Research Institute
摘 要:To obtain the fracture parameters of concrete, fracture tests were conducted with three-point bending beam method aiming at 30 concrete beams with different sizes and different intensity. The concrete specimen with prefabricated crack to determine the fracture parameters of concrete were conducted and the fracture performance of the specimen was analyzed. The test results show that, initial fracture toughness is unrelated to the size of specimens; while unstable fracture toughness is related to the size of specimens. As for specimens of bastard size, when concrete intensity is relatively low, unstable fracture toughness increases along with the increase of intensity; when concrete intensity is relatively high, unstable fracture toughness will decrease; when concrete intensity increases continuously, unstable fracture toughness will further increase somewhat. As for specimens of standard size, unstable fracture toughness will increase along with the increase of intensity. Aiming at concrete beam specimens, we conducted two-dimensional non-linear finite element analysis, obtained the stress intensity factor, and carried out contrastive analysis with the experimental results.
关键词: