基于PSO-SVM精化QP模型的短期卫星钟差预报
来源期刊:桂林理工大学学报2019年第4期
论文作者:肖阳 唐诗华 黄昶程 李宗婉 肖燕
文章页码:893 - 898
关键词:模型精化;钟差预报;支持向量机;QP模型;
摘 要:针对卫星钟差序列的特性,将其视作由趋势项与随机误差项组成的时间序列,提出一种基于PSO-SVM精化的二次多项式预报算法:通过QP模型建模预报钟差值以提取其趋势项,利用SVM模型对拟合阶段的残差值建模进行滚动预报,利用预报所得的差值对QP模型预报阶段的钟差值进行改进。为克服SVM算法自身参数搜索方法的缺陷,采用PSO算法选择其最优参数。实验结果表明:相较于常用算法,该方法预报精度较高,且改进了QP模型预报误差会随时间累积的缺点。
肖阳,唐诗华,黄昶程,李宗婉,肖燕
摘 要:针对卫星钟差序列的特性,将其视作由趋势项与随机误差项组成的时间序列,提出一种基于PSO-SVM精化的二次多项式预报算法:通过QP模型建模预报钟差值以提取其趋势项,利用SVM模型对拟合阶段的残差值建模进行滚动预报,利用预报所得的差值对QP模型预报阶段的钟差值进行改进。为克服SVM算法自身参数搜索方法的缺陷,采用PSO算法选择其最优参数。实验结果表明:相较于常用算法,该方法预报精度较高,且改进了QP模型预报误差会随时间累积的缺点。
关键词:模型精化;钟差预报;支持向量机;QP模型;