基于支持向量机的分类辨识方法及应用
来源期刊:控制工程2016年第5期
论文作者:马相东 卢占庆 谭永彦 王秀英
文章页码:768 - 772
关键词:行波法故障检测;支持向量机;故障信号;扰动信号;分类辨识;
摘 要:针对钢铁企业传统高压线路行波检测器易出现误报警的问题,提出了采用支持向量机(SVM)的分类辨识方法,用于故障信号和扰动信号的辨识。首先,从行波法定位装置数据库中提取报警时的信号特征,构造支持向量的输入向量,建立基于数据驱动的支持向量机模型;然后采用仿真策略确定支持向量机径向基函数中的参数σ和惩罚系C的值,并分析了参数σ及惩罚系数C的值对故障和扰动分类准确率的影响。将所提出的方法应用到莱钢高压线路行波检测器中,结果表明:采用支持向量机的分类辨识方法,可以使行波检测器检测的准确率接近90%,大大提高了莱钢高压线路行波检测器故障检测的可靠性。
马相东1,卢占庆1,谭永彦2,王秀英3
1. 山东省冶金设计院股份有限公司2. 山东钢铁股份有限公司莱芜分公司3. 青岛科技大学信息科学技术学院
摘 要:针对钢铁企业传统高压线路行波检测器易出现误报警的问题,提出了采用支持向量机(SVM)的分类辨识方法,用于故障信号和扰动信号的辨识。首先,从行波法定位装置数据库中提取报警时的信号特征,构造支持向量的输入向量,建立基于数据驱动的支持向量机模型;然后采用仿真策略确定支持向量机径向基函数中的参数σ和惩罚系C的值,并分析了参数σ及惩罚系数C的值对故障和扰动分类准确率的影响。将所提出的方法应用到莱钢高压线路行波检测器中,结果表明:采用支持向量机的分类辨识方法,可以使行波检测器检测的准确率接近90%,大大提高了莱钢高压线路行波检测器故障检测的可靠性。
关键词:行波法故障检测;支持向量机;故障信号;扰动信号;分类辨识;