纳米压入结合有限元模拟确定金属材料的塑性性能

来源期刊:中国有色金属学报(英文版)2013年第8期

论文作者:马 永 张 莹 于海峰 张翔宇 树学峰 唐 宾

文章页码:2368 - 2373

关键词:纳米压入;有限元模拟;代表性应力;代表性应变;初始屈服极限

Key words:nanoindentation; finite element simulation; representative stress; representative stain; initial yield stress

摘    要:材料具有相同的弹性模量 E以及代表性应力与代表性应变 (σr, εr) 时,可以获得相同的纳米压痕加载曲线,而与材料的应变强化指数 n无关。基于此,利用纳米压入结合有限元数值模拟建立一种确定金属材料塑性性能参数的改进方法。首先,不考虑金属材料的加工硬化,通过不断调整代表性应力的假设值,当模拟与实验载荷-位移曲线的加载阶段相吻合时,确定其代表性应力。其次,对金属材料假设不同的应变强化指数,采用相同的方法确定其代表性应变。最后,通过调整应变强化指数的假设值,使模拟曲线与实验曲线的卸载阶段相吻合来确定金属材料的真实应变强化指数,继而利用幂强化本构方程确定金属材料的初始屈服极限。将该方法应用于AISI 304不锈钢、铁及铝合金三种金属,其有效性得到验证。

Abstract: Materials with the same elastic modulus E and representative stress and strain (σr, εr) present similar indentation–loading curves, whatever the value of strain hardening exponent n. Based on this definition, a good approach was proposed to extract the plastic properties or constitutive equations of metals from nanoindentation test combining finite element simulation. Firstly, without consideration of strain hardening, the representative stress was determined by varying assumed representative stress over a wide range until a good agreement was reached between the computed and experimental loading curves. Similarly, the corresponding representative strain was determined with different hypothetical values of strain hardening exponent in the range of 0-0.6. Through modulating assumed strain hardening exponent values to make the computed unloading curve coincide with that of the experiment, the real strain hardening exponent was acquired. Once the strain hardening exponent was determined, the initial yield stress σy of metals could be obtained by the power law constitution. The validity of the proposed methodology was verified by three real metals: AISI 304 steel, Fe and Al alloy.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号