简介概要

基于VMD和奇异差分谱的滚动轴承早期故障诊断

来源期刊:机械设计与制造2019年第12期

论文作者:赵玮

文章页码:230 - 234

关键词:VMD;奇异值差分谱;轴承故障;包络解调;特征提取;

摘    要:针对强噪声环境下滚动轴承早期故障特征信息非常微弱且难以提取的问题,提出了基于变分模态分解(Variational Mode Decomposition,VMD)和奇异值差分谱的故障诊断方法。首先对轴承故障振动信号进行VMD分解得到一系列本征模态分量(Intrinsic Mode Functions,IMFS),由于噪声的干扰,很难从各个模态分量中提取有效的故障特征信息;然后根据相关系数准则,对相关系数较大的分量构建Hanke矩阵进行奇异值分解,求取奇异值差分谱,从差分谱中确定重构信号的有效阶次对信号进行降噪处理;最后对降噪处理后的信号进行Hilbert包络处理,从包络谱中即可准确地提取到故障特征频率。仿真信号和工程数据处理结果表明,该方法能够有效地降低噪声的影响,精确地提取到轴承微弱的故障特征频率信息。

详情信息展示

基于VMD和奇异差分谱的滚动轴承早期故障诊断

赵玮

包头轻工职业技术学院自动化学院

摘 要:针对强噪声环境下滚动轴承早期故障特征信息非常微弱且难以提取的问题,提出了基于变分模态分解(Variational Mode Decomposition,VMD)和奇异值差分谱的故障诊断方法。首先对轴承故障振动信号进行VMD分解得到一系列本征模态分量(Intrinsic Mode Functions,IMFS),由于噪声的干扰,很难从各个模态分量中提取有效的故障特征信息;然后根据相关系数准则,对相关系数较大的分量构建Hanke矩阵进行奇异值分解,求取奇异值差分谱,从差分谱中确定重构信号的有效阶次对信号进行降噪处理;最后对降噪处理后的信号进行Hilbert包络处理,从包络谱中即可准确地提取到故障特征频率。仿真信号和工程数据处理结果表明,该方法能够有效地降低噪声的影响,精确地提取到轴承微弱的故障特征频率信息。

关键词:VMD;奇异值差分谱;轴承故障;包络解调;特征提取;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号