简介概要

基于混合熵和L1范数的遥感图像分类

来源期刊:中国矿业大学学报2012年第6期

论文作者:王雪松 高阳 程玉虎 汪婵

文章页码:971 - 977

关键词:遥感图像;混合熵;L1范数;主动学习;概率型最小二乘支持向量机;

摘    要:针对遥感图像数据具有的高维数、非线性以及海量无标记样本的特性,提出了一种基于混合熵和L1范数的概率型最小二乘支持向量机分类方法.将准熵和熵差分融合,构造一种混合熵用以从海量无标记样本集中选出最有"价值"的待标记样本;基于L1范数距离度量,进一步从待标记样本集中筛选出孤立点和冗余点加以剔除;基于初始已标记样本以及筛选得到的样本,训练得到概率型最小二乘支持向量机.对反射光学系统的成像光谱仪(ROSIS)高光谱遥感图像进行了分类实验.结果表明:所提分类方法的总精度和Kappa系数分别达到了89.90%和0.868 5,能够以较少的训练样本得到较高的分类精度,其更适于处理遥感图像分类问题.

详情信息展示

基于混合熵和L1范数的遥感图像分类

王雪松,高阳,程玉虎,汪婵

中国矿业大学信息与电气工程学院

摘 要:针对遥感图像数据具有的高维数、非线性以及海量无标记样本的特性,提出了一种基于混合熵和L1范数的概率型最小二乘支持向量机分类方法.将准熵和熵差分融合,构造一种混合熵用以从海量无标记样本集中选出最有"价值"的待标记样本;基于L1范数距离度量,进一步从待标记样本集中筛选出孤立点和冗余点加以剔除;基于初始已标记样本以及筛选得到的样本,训练得到概率型最小二乘支持向量机.对反射光学系统的成像光谱仪(ROSIS)高光谱遥感图像进行了分类实验.结果表明:所提分类方法的总精度和Kappa系数分别达到了89.90%和0.868 5,能够以较少的训练样本得到较高的分类精度,其更适于处理遥感图像分类问题.

关键词:遥感图像;混合熵;L1范数;主动学习;概率型最小二乘支持向量机;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号