全尾砂絮凝沉降速度优化预测模型

来源期刊:中国有色金属学报2015年第3期

论文作者:王新民 赵建文 张德明

文章页码:793 - 799

关键词:充填;沉降速度;支持向量机;遗传算法

Key words:backfill; sedimentation velocity; support vectormachine; genetic algorithm

摘    要:建立全尾砂沉降速度GA-SVM优化预测模型,利用遗传学算法对全尾砂沉降速度进行优化预测。建立支持向量机(SVM)回归预测模型,采用训练集对模型进行训练,以验证集预测值的均方误差作为适应度函数,通过遗传算法(GA)对SVM模型参数进行优化选择,应用优化得到的SVM模型对预测集进行预测。以司家营铁矿为例,在絮凝剂单耗8.6 g/t、尾砂浓度18%条件下,沉降速度即可达到1.31 m/h,满足生产需要,比原生产所需絮凝剂单耗减少14%。应用表明:该预测模型具有较高的实用性,为全尾砂沉降速度优化预测提供一种全新思路。

Abstract: Based on the GA-SVM optimal prediction model of sedimentation velocity, the genetic algorithm was used to make an optimal predicition. Support vector machine (SVM) regression model was established and trained by the use of samples of training. The acquired mean error of the value was made as a fitness function. Then, the model parameters were optimized through the genetic algorithm (GA). At the end, the optimized SVM was applied to predict the prediction set. GA-SVM optimal prediction mode was used in Sijiaying Iron Mine, the results show that when the flocculating agent consumption and tailings concentration are 8.6 g/t and 18%, respectively, the sedimentation velocity reaches 1.31 m/h. which meet the production requirements. The optimal prediction mode has relatively high practical value, can provide a new method to optimize the sedimentation velocity of unclassified tailings.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号