简介概要

Combustion synthesis and luminescence characteristic of rare earth activated LiCaBO3

来源期刊:Journal of Rare Earths2012年第10期

论文作者:N.S. Bajaj S.K. Omanwar

文章页码:1005 - 1008

摘    要:Lithium calcium borate (LiCaBO3) polycrystalline thermoluminescence (TL) phosphor doped with rare earth (Tb3+ and Dy3+) elements was synthesized by novel solution combustion synthesis. The reaction produced very stable crystalline LiCaBO3:D(D=Tb3+ and Dy3+) phosphors. These rare earth doped phosphors material showed maximum TL sensitivity with favorable glow curve shape. TL glow curve of X-ray irradiated that LiCaBO3:Tb3+ and LiCaBO3:Dy3+ samples showed two major well-separated glow peaks. The TL sensitivity of these phosphors to X-ray radiation was comparable with that of TLD-100(Harshaw). Photoluminescence spectra of LiCaBO3:Tb3+ and LiCaBO3:Dy3+ showed the characteristic Tb3+ and Dy3+ peaks respectively. TL response to X-ray radiation dose was linear up to 25 Gy.

详情信息展示

Combustion synthesis and luminescence characteristic of rare earth activated LiCaBO3

N.S. Bajaj,S.K. Omanwar

Department of Physics, SGB Amravati University Amravati-444602 (M.S.)

摘 要:Lithium calcium borate (LiCaBO3) polycrystalline thermoluminescence (TL) phosphor doped with rare earth (Tb3+ and Dy3+) elements was synthesized by novel solution combustion synthesis. The reaction produced very stable crystalline LiCaBO3:D(D=Tb3+ and Dy3+) phosphors. These rare earth doped phosphors material showed maximum TL sensitivity with favorable glow curve shape. TL glow curve of X-ray irradiated that LiCaBO3:Tb3+ and LiCaBO3:Dy3+ samples showed two major well-separated glow peaks. The TL sensitivity of these phosphors to X-ray radiation was comparable with that of TLD-100(Harshaw). Photoluminescence spectra of LiCaBO3:Tb3+ and LiCaBO3:Dy3+ showed the characteristic Tb3+ and Dy3+ peaks respectively. TL response to X-ray radiation dose was linear up to 25 Gy.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号