基于平衡学习的CMAC神经网络非线性辨识算法
来源期刊:控制与决策2004年第12期
论文作者:朱大奇 张伟
文章页码:1425 - 1428
关键词:小脑模型关节控制器;信度分配;平衡学习;非线性辨识;
摘 要:为提高小脑模型关节控制器(CMAC)神经网络在线学习的快速性和准确性,提出一种平衡学习的概念,并设计一种改进的CMAC学习算法.在常规的CMAC中,误差的校正值被平均地分配给所有激活存储单元,而不管这些存储单元的可信度;在改进的CMAC中,利用激活单元先前学习次数作为可信度,其误差校正值与激活单元先前学习次数的负k次方成比例.仿真结果表明,当k为一适当数值时,改进CMAC具有较快的学习速度和较高的精度,特别是在神经网络的初始学习阶段.
朱大奇,张伟
摘 要:为提高小脑模型关节控制器(CMAC)神经网络在线学习的快速性和准确性,提出一种平衡学习的概念,并设计一种改进的CMAC学习算法.在常规的CMAC中,误差的校正值被平均地分配给所有激活存储单元,而不管这些存储单元的可信度;在改进的CMAC中,利用激活单元先前学习次数作为可信度,其误差校正值与激活单元先前学习次数的负k次方成比例.仿真结果表明,当k为一适当数值时,改进CMAC具有较快的学习速度和较高的精度,特别是在神经网络的初始学习阶段.
关键词:小脑模型关节控制器;信度分配;平衡学习;非线性辨识;