简介概要

基于小波包与EKF-RBF神经网络辨识的瓦斯传感器故障诊断

来源期刊:煤炭学报2011年第5期

论文作者:王军号 孟祥瑞 吴宏伟

文章页码:867 - 872

关键词:瓦斯传感器;小波包;EKF-RBF神经网络;故障诊断;

摘    要:针对瓦斯传感器常见的偏置型、冲击型、漂移型和周期型4种突发型故障,以小波分析和RBF神经网络为基础,提出了由小波包分解提取特征能量谱与扩展Kalman滤波算法(EKF)优化的RBF神经网络进行模式分类辨识的瓦斯传感器故障诊断方法。对瓦斯传感器的输出信号进行小波包分解,运用基于代价函数的局域判别基(LDB)算法进行裁剪,获取最优的特征能量谱,经处理后作为特征向量训练EKF-RBF神经网络,采用参数增广和统计动力学方法,通过带有整定因子的EKF参数估计,用来辨识瓦斯传感器的故障类型。实验结果表明:该方法的辨识正确率在95%以上,误报率和漏报率都明显优于其他算法,能够有效用于瓦斯传感器的故障在线诊断。

详情信息展示

基于小波包与EKF-RBF神经网络辨识的瓦斯传感器故障诊断

王军号1,2,孟祥瑞2,吴宏伟3

1. 安徽理工大学计算机科学与工程学院2. 安徽理工大学能源与安全学院3. 安徽理工大学电气与信息工程学院

摘 要:针对瓦斯传感器常见的偏置型、冲击型、漂移型和周期型4种突发型故障,以小波分析和RBF神经网络为基础,提出了由小波包分解提取特征能量谱与扩展Kalman滤波算法(EKF)优化的RBF神经网络进行模式分类辨识的瓦斯传感器故障诊断方法。对瓦斯传感器的输出信号进行小波包分解,运用基于代价函数的局域判别基(LDB)算法进行裁剪,获取最优的特征能量谱,经处理后作为特征向量训练EKF-RBF神经网络,采用参数增广和统计动力学方法,通过带有整定因子的EKF参数估计,用来辨识瓦斯传感器的故障类型。实验结果表明:该方法的辨识正确率在95%以上,误报率和漏报率都明显优于其他算法,能够有效用于瓦斯传感器的故障在线诊断。

关键词:瓦斯传感器;小波包;EKF-RBF神经网络;故障诊断;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号