基于深度学习的城市轨道交通短时客流量预测
来源期刊:控制与决策2019年第8期
论文作者:龙小强 李捷 陈彦如
文章页码:1589 - 1600
关键词:城轨交通短时客流量;深度信念网络;支持向量机;遗传算法;粒子群算法;长短期记忆网络;
摘 要:我国城市轨道交通已进入快速发展期,准确预测城轨交通短时客流量,对于城轨运营安全、运营效率及运营成本具有重要意义.城轨交通短时客流量由于具有强随机性、周期性、相关性及非线性的特征,浅层模型的预测精度并不理想.对此,基于深度信念网络(DBN)和支持向量回归机(SVM),提出城轨交通短时客流深层预测模型(DBN-P/GSVM),同时基于遗传算法(GA)和粒子群算法(PSO)实现SVM的参数寻优.最后,对成都地铁火车北站客流量预测进行实例分析.结果表明, DBN-P/GSVM深度预测模型在均方误差、均方根误差、绝对误差均值及绝对百分比误差均值等方面均优于浅层模型——GA-SVM模型、PSO-SVM模型和BP神经网络模型,以及深层模型长短期记忆网络(LSTM)与LSTM-Softmax.
龙小强,李捷,陈彦如
广州市交通运输研究所与广州市公共交通研究中心北京东方科技集团股份有限公司CIO组织数字化应用中心西南交通大学经济管理学院
摘 要:我国城市轨道交通已进入快速发展期,准确预测城轨交通短时客流量,对于城轨运营安全、运营效率及运营成本具有重要意义.城轨交通短时客流量由于具有强随机性、周期性、相关性及非线性的特征,浅层模型的预测精度并不理想.对此,基于深度信念网络(DBN)和支持向量回归机(SVM),提出城轨交通短时客流深层预测模型(DBN-P/GSVM),同时基于遗传算法(GA)和粒子群算法(PSO)实现SVM的参数寻优.最后,对成都地铁火车北站客流量预测进行实例分析.结果表明, DBN-P/GSVM深度预测模型在均方误差、均方根误差、绝对误差均值及绝对百分比误差均值等方面均优于浅层模型——GA-SVM模型、PSO-SVM模型和BP神经网络模型,以及深层模型长短期记忆网络(LSTM)与LSTM-Softmax.
关键词:城轨交通短时客流量;深度信念网络;支持向量机;遗传算法;粒子群算法;长短期记忆网络;