Denitrification Performance of Rare Earth Tailings Catalysts
Huang Yanan Wang Zhenfeng Wu Wenfei
School of Energy and Environment,Inner Mongolia University of Science and Technology
State Key Laboratory of Multi-metal Resources Comprehensive Utilization,Baiyun Obo Mine,Inner Mongolia Autonomous Region
Abstract:
The rare earth tailings of Bayan Obo mine are rich in rare earth,iron and other catalytic active substances. In this paper,rare earth tailings were ground and roasted at different temperatures,to prepare high performance rare earth tailings based denitrification catalyst. Denitration performance test showed that in the reaction temperature range of 500~900 °C,400 ℃ calcination of rare earth tailing samples presented a most excellent catalytic denitration performance. X-ray diffraction(XRD)pattern showed that,compared with raw ore samples,the diffraction peak intensity of Fe2 O3 and CeCO3 F after roasting of rare earth tailings increased,while that of CeCO3 F decreased. Scaning electron microscope(SEM)showed that cracks and holes appeared on the surface of the sample.The H2-temperature programmed reduction(H2-TPR)spectrum showed that the reduction temperature range of the 400 ℃ calcined tailings was broadened and the reduction peak was increased. X-ray photoelectron spectroscopy(XPS)analysis showed that Ce in the form of Ce3+and Ce4+,and Fe coexisted in the form of Fe2+and Fe3+,rare earth tailing lattice oxygen content of 400 ℃ calcination tailings was significantly higher than that of the rare earth tailings. When the rare earth tailings roasting temperature was 400 ℃,NO concentration was 500×10-6,CO/NO was 4,and the reaction temperature was 800 ℃,the denitrification efficiency of catalyst was the best,up to 93.37%. This study would provide a reference for the solution of rare earth tailings accumulation problems.
图5(a,b)分别为原稀土尾矿与400℃焙烧尾矿的Ce 3d XPS图。对Ce 3d的谱峰进行分峰拟合,Ce元素主要以两种价态存在于化合物中,其中Ce4+的特征峰出现在v0(B.E.≈882.20 e V),v1(B.E.≈888.60 e V),v2(B.E.≈898.00 e V),v3(B.E.≈900.70e V),v4(B.E.≈907.20 e V),v5(B.E.≈916.15 e V)。Ce3+的特征峰出现在u0(B.E.≈884.40 e V),u1(B.E.≈880.00),u2(B.E.≈903.90 e V),u3(B.E.≈899.30e V)
[18]。由图5可知,稀土尾矿与400℃焙烧尾矿均具有Ce3+与Ce4+特征峰。而具有一定数量的Ce3+/Ce4+氧化还原电子对,有利于表面氧的储存和释放、提高催化剂表面氧化性、增大NOx吸附在活性位点上的几率。稀土尾矿Ce4+/Ce3+为0.95,400℃焙烧尾矿Ce4+/Ce3+为5.77,所以可得400℃焙烧尾矿Ce4+的相对含量多于稀土尾矿,证明焙烧过程中有Ce3+向Ce4+的转换,表明含Ce3+的矿相分解后有一定量的Ce O2的生成,而Ce O2的增多有助于催化脱硝,从而400℃焙烧尾矿脱硝性能优于稀土尾矿。
图6(c)为稀土尾矿Fe 2p XPS图,图6(d)为400℃焙烧尾矿Fe 2p XPS图。稀土尾矿和400℃焙烧尾矿均在结合能为w1(B.E.≈711 e V),w2(B.E.≈725 e V)出现两个峰,这表现为Fe3+的特征峰;稀土尾矿与400℃焙烧尾矿在结合能为U(B.E.≈718~721 e V)左右出现特征峰,这表现为Fe2+的特征峰
[19]。上述结果表明在催化剂的表面Fe以Fe2+和Fe3+的形态共存,表明稀土尾矿焙烧前后同时具有氧化性和还原性。稀土尾矿Fe3+/Fe2+为0.44,400℃焙烧尾矿Fe3+/Fe2+为3.65,可得400℃焙烧尾矿Fe3+的相对含量多于稀土尾矿,证明焙烧过程中有Fe2+向Fe3+的转换,表明含Fe2+的矿相分解后有一定量的Fe2O3的生成,而Fe2O3的增多有助于催化脱硝,从而400℃焙烧尾矿脱硝性能优于稀土尾矿。
图5 稀土尾矿焙烧前后Ce 3d XPS能谱图
Fig.5 Ce 3d XPS spectrum of rare earth tailings before and af‐ter roasting
图7为稀土尾矿与400℃焙烧尾矿O 1s XPS图。在XPS图谱上可以看到稀土尾矿与400℃焙烧尾矿均有两个峰,一个是在(531.5~533.0 e V)之间吸附氧的峰,另一个是在(529.5~530.5 e V)之间晶格氧的峰,而焙烧处理后的稀土尾矿的晶格氧含量明显多于原稀土尾矿。表明Ce O2在缺氧条件下释放了晶格氧,而晶格氧要被消耗成为表面吸附氧,所以Ce O2晶体内的部分Ce4+会变为Ce3+,形成O空位,在富氧条件下又会把吸附氧变成晶格氧储存起来,Ce3+又会变成Ce4+。而这一情况的出现推测是由于尾矿焙烧后使其中的氟碳铈矿晶相峰增多从而可使更多氟碳铈矿分解为Ce O2。而这一转换有利于表面氧的存储和释放、可以提高催化剂表面氧化性、增大NOx吸附在活性位点上的几率,所以经过400℃焙烧处理的稀土尾矿脱硝效率明显高于原稀土尾矿。
图6 稀土尾矿焙烧前后Fe 2p XPS能谱图
Fig.6 Fe 2p XPS spectra of rare earth tailings before and after roasting