简介概要

复杂背景下全景视频运动小目标检测算法

来源期刊:控制与决策2021年第1期

论文作者:王殿伟 杨旭 韩鹏飞 刘颖 谢永军 宋海军

关键词:全景图像;Fast RPCA;Faster R-CNN;目标检测;

摘    要:为解决复杂背景下全景视频中运动小目标检测精度低的问题,提出一种基于复杂背景下全景视频运动小目标检测算法.首先,为降低复杂背景信息的干扰,提高目标检测的精度,采用快速鲁棒性主成分分析(Fast RPCA)算法将全景视频图像的前景背景信息分离,并提取出前景信息作为有效的图像特征;然后,改进更快的基于区域的卷积神经网络(Faster R-CNN)中的区域生成网络(RPN)的候选框尺度大小,使之适应全景图像中的目标尺寸,再对前景特征图进行训练;最后,通过RPN网络和Fast R-CNN网络共享卷积层输出检测模型,实现对全景视频图像中小目标的精准检测.实验结果表明,所提出算法可以有效抑制复杂的背景信息对目标检测精度的影响,并对全景视频图像中的运动小目标具有较高的检测精度.

详情信息展示

复杂背景下全景视频运动小目标检测算法

王殿伟1,杨旭1,韩鹏飞2,刘颖1,谢永军3,宋海军3

1. 西安邮电大学通信与信息工程学院2. 西湖大学人工智能研究与创新中心3. 中国科学院西安光学精密机械研究所

摘 要:为解决复杂背景下全景视频中运动小目标检测精度低的问题,提出一种基于复杂背景下全景视频运动小目标检测算法.首先,为降低复杂背景信息的干扰,提高目标检测的精度,采用快速鲁棒性主成分分析(Fast RPCA)算法将全景视频图像的前景背景信息分离,并提取出前景信息作为有效的图像特征;然后,改进更快的基于区域的卷积神经网络(Faster R-CNN)中的区域生成网络(RPN)的候选框尺度大小,使之适应全景图像中的目标尺寸,再对前景特征图进行训练;最后,通过RPN网络和Fast R-CNN网络共享卷积层输出检测模型,实现对全景视频图像中小目标的精准检测.实验结果表明,所提出算法可以有效抑制复杂的背景信息对目标检测精度的影响,并对全景视频图像中的运动小目标具有较高的检测精度.

关键词:全景图像;Fast RPCA;Faster R-CNN;目标检测;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号